Методы математического анализа активно развивались следующем столетии(в первую очередь следует назвать имена Л. Эйлера, завершившего систематические исследования интегрирования элементарных функций, и И.Бернулли). В развитии интегрального исчисления приняли участие русские математики М.В. Остроградский (1801-1862), В.Я. Буняковский (1804-1889), П.Л. Чебышев(*1821-1894). Принципиальное значение имели, что существуют интегралы, не выразимые через элементарные функции.
Строгое изложение теории интеграла появилось только в прошлом веке. Решение этой задачи связано с именами О. Коши, одного из крупнейших математиков немецкого ученого Б.Римана(1826-1866), французского математика Г. Дарбу(1842-1917).
Ответы на многие вопросы, связанные с существованием площадей и объемов фигур, были получены с созданием К. Жорданом (1838-1922) теории меры.
Различные обобщения понятия интеграла в начале нашего столетия были предложены французскими математиками А.Лебегом (1875-1941) и А.Данжуа(1884-2974), советским математиком А.Я. Хинчиным(1894-1959).
О применении понятия интеграла. Интегрирование возникает в математике не только как операция, обратная к дифференцированию, но также и при решении многих других задач, о которых было уже сказано. Хочется привести одну необычную задачу, решение которой тоже основано на применении понятия интеграла. « Лев и человек, находящиеся на огороженной круговой арене, имеют одинаковую максимальную скорость. Какой стратегии должен придерживаться лев, чтобы быть уверенным в своей трапезе?»
Говорят, что задача о «взвешивании монет» стоила 10 000 человеко-часов непродуктивно потраченного времени математиков, занятых оборонной работой во время войны. Было даже сделано предложение сбросить эту задачу над Германией. Задача о льве, хотя и имеет уже 25-летнюю давность, недавно вновь пронеслась по странам; но большинство математиков удовлетворились ответом «лев должен находиться на радиусе ОМ (М - человек)». Применяя понятие интеграла для исследования поставленной задачи, можно прийти к выводу: L не может поймать М, пока М находится на М0 М1. Так как, далее, L1 находится на ОМ, а М1М2 перпендикулярно к L1 М1, то L не может поймать М, пока М находится на М1М2. Это продолжается на каждом последующем звене МпМп+1 и, следовательно, в течение бесконечного времени, так как общая длина ломанной бесконечна.
Другим ярким и интересным примером применения интеграла является задача Ньютона о притяжении шара.