«Колосс» стал первым полностью электронным вычислительным устройством. В нём использовалось большое количество электровакуумных ламп, ввод информации выполнялся с перфоленты. «Колосс» можно было настроить на выполнение различных операций булевой логики, но он не являлся тьюринг-полной машиной. Помимо Colossus Mk I, было собрано ещё девять моделей Mk II. Информация о существовании этой машины держалась в секрете до 1970-х гг. Уинстон Черчилль лично подписал приказ о разрушении машины на части, не превышающие размером человеческой руки. Из-за своей секретности, «Колосс» не упомянут во многих трудах по истории компьютеров.
Американский ENIAC, который часто называют первым электронным компьютером общего назначения, публично доказал применимость электроники для масштабных вычислений. Это стало ключевым моментом в разработке вычислительных машин, прежде всего из-за огромного прироста в скорости вычислений, но также и по причине появившихся возможностей для миниатюризации. Созданная под руководством Джона Мочли и Дж. Преспера Эккерта (J. Presper Eckert), эта машина была в 1000 раз быстрее, чем все другие машины того времени. Разработка «ЭНИАК» продлилась с 1943 до 1945 года. В то время, когда был предложен данный проект, многие исследователи были убеждены, что среди тысяч хрупких электровакуумных ламп многие будут сгорать настолько часто, что «ЭНИАК» будет слишком много времени простаивать в ремонте, и тем самым, будет практически бесполезен. Тем не менее, на реальной машине удавалось выполнять несколько тысяч операций в секунду в течение нескольких часов, до очередного сбоя из-за сгоревшей лампы.
«ЭНИАК», безусловно, удовлетворяет требованию полноты по Тьюрингу. Но «программа» для этой машины определялась состоянием соединительных кабелей и переключателей — огромное отличие от машин с хранимой программой, появившихся позже. Тем не менее, в то время, вычисления, выполняемые без помощи человека, рассматривались как достаточно большое достижение, и целью программы было тогда решение только одной единственной задачи. (Улучшения, которые были завершены в 1948 году, дали возможность исполнения программы, записанной в специальной памяти, что сделало программирование более систематичным, менее «одноразовым» достижением.)
Переработав идеи Эккерта и Мочли, а также, оценив ограничения «ЭНИАК», Джон фон Нейман написал широко цитируемый отчёт, описывающий проект компьютера (EDVAC), в котором и программа, и данные хранятся в единой универсальной памяти. Принципы построения этой машины стали известны под названием «архитектура фон Неймана» и послужили основой для разработки первых по-настоящему гибких, универсальных цифровых компьютеров.[1]
Необходимо отметить огромную роль американского математика фон Неймана в становлении техники первого поколения. Нужно было осмыслить сильные и слабые стороны ENIAC и дать рекомендации для последующих разработок. В отчете фон Неймана и его коллег Г. Голдстайна и А.Беркса (июнь 1946 года) были четко сформулированы требования к структуре компьютеров. Отметим важнейшие из них:
· машины на электронных элементах должны работать не в десятичной, а в двоичной системе счисления;
· программа, как и исходные данные, должна размещаться в памяти машины;
· программа, как и числа, должна записываться в двоичном коде;
· трудности физической реализации запоминающего устройства, быстродействие которого соответствует скорости работы логических схем, требуют иерархической организации памяти (то есть выделения оперативной, промежуточной и долговременной памяти);
· арифметическое устройство (процессор) конструируется на основе схем, выполняющих операцию сложения; создание специальных устройств для выполнения других арифметических и иных операций нецелесообразно;
· в машине используется параллельный принцип организации вычислительного процесса (операции над числами производятся одновременно по всем разрядам).
Практически все рекомендации фон Неймана впоследствии использовались в машинах первых трех поколений, их совокупность получила название «архитектура фон Неймана». Первый компьютер, в котором были воплощены принципы фон Неймана, был построен в 1949 году английским исследователем Морисом Уилксом. С той поры компьютеры стали гораздо более мощными, но подавляющее большинство из них сделано в соответствии с теми принципами, которые изложил в своем докладе в 1945 года Джон фон Нейман.[4]
Транзисторы, в качестве миниатюрной и более эффективной замены электровакуумным лампам, совершили революцию в вычислительной технике[2].
Следующим крупным шагом в истории компьютерной техники, стало изобретение транзистора в 1947 году. Они стали заменой хрупким и энергоёмким лампам. О компьютерах на транзисторах обычно говорят как о «втором поколении», которое доминировало в 1950-х и начале 1960-х. Благодаря транзисторам и печатным платам, было достигнуто значительное уменьшение размеров и объёмов потребляемой энергии, а также повышение надёжности. Например, IBM 1620 на транзисторах, ставшая заменой IBM 650 на лампах, была размером с офисный стол. Однако компьютеры второго поколения по-прежнему были довольно дороги и поэтому использовались только университетами, правительствами, крупными корпорациями.
Компьютеры второго поколения обычно состояли из большого количества печатных плат, каждая из которых содержала от одного до четырёх логических вентилей или триггеров. Первыми советскими серийными полупроводниковыми ЭВМ стали «Весна» и «Снег», выпускаемые с 1964 по 1972 год. Пиковая производительность ЭВМ «Снег» составила 300 000 операций в секунду.
Бурный рост использования компьютеров начался с так называемым «3-им поколением» вычислительных машин. Начало этому положило изобретение интегральных схем, которые независимо друг от друга изобрели лауреат Нобелевской премии Джек Килби и Роберт Нойс. Позже это привело к изобретению микропроцессора Тэдом Хоффом (компания Intel)[3].
В течение 1960-х наблюдалось определённое перекрытие технологий 2-го и 3-го поколений. В конце 1975 года, в Sperry Univac продолжалось производство машин 2-го поколения, таких как UNIVAC 494.
Появление микропроцессоров привело к разработке микрокомпьютеров — небольших недорогих компьютеров, которыми могли владеть небольшие компании или отдельные люди. Микрокомпьютеры, представители четвёртого поколения, первые из которых появился в 1970-х, стали повсеместным явлением в 1980-х и позже. Стив Возняк, один из основателей Apple Computer, стал известен как разработчик первого массового домашнего компьютера, а позже — первого персонального компьютера. Компьютеры на основе микрокомпьютерной архитектуры, с возможностями, добавленными от их больших собратьев, сейчас доминируют в большинстве сегментов рынка.
Первое, что приходит на ум любому человеку при оценке перспектив развития вычислительной техники, — это обязательное уменьшение размеров компьютеров, неуклонное увеличение их быстродействия и объема памяти.
Легко прогнозировать, что число выпускаемых ЭВМ будет увеличиваться, а сфера их использования — расширяться. Даже непосвященному человеку сейчас понятно, что будущее вычислительной техники тесно связано с глобальными Сетями.
Многие люди могут вспомнить, что в настоящее время ведется разработка ЭВМ пятого поколения, основными особенностями которых будут речевой ввод и вывод информации, а также способность машин к самообучению (интеллектуальность). В будущем широкое распространение получит виртуальная реальность. Такое представление навевается современными научно-фантастическими фильмами и книгами.
Информационная магистраль даст возможность быстро находить ответы на многие возникающие вопросы. Предположим, что в выпуске новостей рядом с премьер-министром телезритель заметил неизвестного ему человека. С помощью пульта дистанционного управления телезритель сможет указать на эту персону. На экране появится биография этого человека и перечень телевизионных репортажей, в которых неизвестный фигурировал в последнее время. Выбрав нужный репортаж из предложенного списка, пользователь сможет посмотреть соответствующий видеоматериал.
В перспективе, когда информационная магистраль ослабит зависимость предприятий от городских структур, многие фирмы децентрализуются, рассредоточат рабочие места. Так в США уже несколько миллионов человек не ходили ежедневно в офисы, а работали дома и поддерживали связь с внешним миром через факсы, телефоны и электронную почту.
Компьютеры позволят подгонять серийные товары под запросы конкретного потребителя. Все чаще товары будут создавать так, чтобы они точно соответствовали пожеланиям заказчика. Тогда поточное производство многих категорий товаров сменится серийным производством с подгонкой под заказчика (обувь, одежда, мебель).
Скоро появятся швейные машины со встроенными ЭВМ, способные при пошиве каждой рубашки следовать разным наборам команд. Заказывая одежду, пользователь сообщит свои размеры, фасон и прочие переменные параметры. Все эти сведения через информационную магистраль попадут на фабрику, которая тут же выполнит заказ и передаст его службе быстрой доставки.
Перемены не обойдут банковское дело. Большинство людей сейчас вкладывает деньги в филиалы банков, расположенных недалеко от дома или от работы. Несмотря на некоторые отличия в процентных ставках и наборе услуг, редко кто меняет свой банк на более выгодный банк, если до его филиала надо ехать куда-то в сторону. Да и перевод счета из банка в банк пока что занимает много времени. Но когда информационная магистраль уменьшит значимость географического фактора, появятся электронные банки, у которых нет никаких филиалов. Благодаря минимуму накладных расходов, электронные банки окажутся весьма конкурентоспособными, а все операции будут осуществляться через компьютерные системы. Потребность в наличных средствах сократится, потому что большую часть покупок будут совершать через компьютеры-бумажники или электронные смарт-карты.