Поскольку теория множеств не имеет внешне-математических приложений, в ней мы фокусируемся на ее собственные вычисления и доказательства, она неинтересна (например, не-перечислимость действительных чисел неинтересно и бесполезно), а весь интерес лежит в «очаровании» неправильной интерпретации доказательств теории множеств.
И все же, вопрос о том, является ли соединение знаков предложением данного математического исчисления (т.е., исчисления с внешне-математическим приложением), является вопросом внутренним, синтаксическим, ответить на который мы можем с помощью знания доказательств и процедур разрешения исчисления.
Витгенштейн ошибочно думал – возможно из-за того, что прочитал только Введение Геделя – что (a) Гедель доказывает что существуют истинные, но недоказуемые предложения в PM (Principia Mathematica) (когда, на самом деле, Гедель синтаксически доказывает, что если PM w-совместимо, то предложение Геделя неразрешимо в PM), и (b) что доказательство Геделя использует ссылающееся на себя предложение для семантического показа того, что существуют истинные, но недоказуемые предложения в PM. По этой причине, у Витгенштейна две главных цели в (RFM App. III): (1) отвергнуть или найти неточности, по его собственным словам, в сомнительном доказательстве Геделя существования истинных, но недоказуемых предложений в PM, и (2) показать, по его собственным словам, что там, где «истинно в исчислении Г» отождествляется с «доказано в исчислении Г», сама идея об истинном, но недоказуемом предложении исчисления Г бессмысленна.
Для этого Витгенштейн конструирует предложение Р в терминах символизма Рассела, т.ч. посредством некоторых определений и преобразований оно может быть интерпретировано следующим образом: «Р не доказуемо в системе Рассела». Т.о., это предложение семантически ссылается на себя, и говорит о себе, что оно не доказуемо в PM. Нетрудно заметить, что такое предложение является истинным, но не доказуемым (рассуждение от противного). (1) следует из того, что нет противоречий, если мы не будем интерпретировать Р как «Р не доказуемо в системе Рассела» - в самом деле, не учитывая эту интерпретацию, доказательство Р не дает нам доказательства не-Р, а доказательство не-Р не дает доказательства Р. Другими словами, ошибка в доказательстве состоит в ошибочном предположении, что математическое предложение Р «может быть интерпретировано как «Р не доказуемо в системе Рассела»». Рассмотрим (2). Согласно концепции Витгенштейна «математической истины», истинное предложение в PM – это либо аксиома, либо доказанное предложение, что означает, что «истинное в PM» тождественно с «доказано в PM».
Исходя из этой (естественной) интерпретации (RFM App. III), заключение ранних комментаторов о том, что Витгенштейн неправильно понял технику аргументации Геделя, кажется правдоподобной. Во-первых, Витгенштейн ошибочно думал, что доказательство Геделя по существу семантическое и что оно использует и требует ссылающегося на себя предложения. Во-вторых, Витгенштейн говорит, что «противоречие неприменимо» для «предсказания» того, что «таковая и таковая конструкция невозможна» (т.е., что Р недоказуемо в PM), что, по крайней мере на первый взгляд, показывает, что Витгенштейн не смог оценить «предположение непротиворечивости» доказательства Геделя.
4. Влияние философии математики на саму математику
(краткое содержание)
В средний и поздний периоды, Витгенштейн верил в то, что он предоставляет философскую ясность для аспектов и частей математики, для математических концепций, и для философских концепций математики. Теряя такую ясность и не стремясь к абсолютной ясности, математики конструируют новые игры, иногда из-за неправильного понимания значения их математических предложений и математических терминов. Образование и в особенности хорошее образование в математике не поощряет ясность, а даже подавляет ее – вопросы, которые заслуживают ответа, или не задаются, или опускаются. Математики будущего, однако, будут куда более восприимчивыми, и это будет (постоянно) упрощать математические обобщения и изобретения, т.к. математики поймут, что новые обобщения и конструкции (например, предложения арифметики трансфинитных мощностей) плохо связаны с прочным ядром математики или приложениями в реальном мире. Философская ясность, в итоге, позволит математикам и философам «возвратиться к неопровержимым фактам» (PG 467).
Ссылки.
1. “Термин контингенция — это калька с английского и французского contingence, а также английского contingency, производных от латинского contingere — касаться, граничить, происходить, случаться. Contigent значит случайный, возможный, вероятный, неожиданный, происходящий по неизвестным причинам, неопределенный, зависимый от неизвестных обстоятельств, факторов или условий. В отечественной философии и теоретической социологии последних лет этот термин часто переводят как случайность или возможность, но оба варианта имеют недостатки. Возможное отличается прежде всего от невозможного, желаемого, уже случившегося, в то время как термин контингенция часто употребляют в контексте отличия от необходимого, закономерного, с одной стороны, и абсолютно свободного, с другой. Возможное же вполне может быть закономерным. С этой точки зрения термин случайность лучше, но случайность часто понимается как математически определяемая вероятность, то есть опять же вписанная в рамки законов распределения. Иногда говорят о чистой случайности, неподвластной математическим расчетам, но тогда она напоминает свободу. А иногда и математическую случайность представляют как обратную сторону свободы. Иногда контингенцию переводят как зависимость, но в этом случае теряется ее смысловая связь со случайностью и возможностью. С технической точки зрения, можно было бы довольно точно говорить о не-необходимости, однако это слово слишком искусственно и неблагозвучно. Так что будем в дальнейшем называть контингенцию ее собственным именем, не отказывая себе в удовольствии узнавать ее и там, где она скрыта под маской.” - А. Е. Сериков, “Проблема двойной контингенции взаимодействия и смысловая связь событий” (Mixtura verborum`2003: возникновение, исчезновение, игра: Сб. ст. / Под общ.ред. С.А. Лишаева. – Самара: Самар. гуманит. акад., 2003. – 183 с. стр.102-119
2. В своей посмертно опубликованной работе (1953*, 334-335), Курт Гедель говорит, что «синтаксическая точка зрения», «комбинация номинализма и конвенционализма» была разработана «в районе 1930» «R. Carnap, H. Hahn, и M. Schlick, по большей части под влиянием Л. Витгенштейна» (т.е., «Витгенштейн 1922»)
3. Сторонники логистической интерпретации ЛФТ также игнорируют высказанное Витгенштейном неуважение ко второму изданию Principia Mathematica Рассела (McGuinness и von Wright, 1995*, 186: письмо F. Ramsey своей матери, 20 сентября, 1923) и его пренебрежение и критику защиты логицизма Рамзея в “The Foundations of Mathematics” [см. версию Waismann письма Витгенштейна к Рамзею, 1927 (WVC 189, сноска #1)]