Однако, структура потоковых задач ведет к гораздо более эффективным решениям (как с теоретической, так и с практической точек зрения), чем решение линейных программ. И тот подход получил наибольшее внимание со стороны исследователей с тех пор как Форд и Фалкерсон выбрали его в своем фундаментальном труде по потокам в сетях.
В течении последующих четырех десятилетий одной из основных задач для сообщества исследователей в области компьютерных наук и исследования операций стало повышение эффективности алгоритмов для потоков в сетях. Решенной эту задачу можно считать в 1997 году, с появлением алгоритма Рао - Гольдберга. С тех пор основные усилия исследователей направлены на изучение динамических потоков – обобщения обычных («статических») потоков, учитывающего время.
Исследования в теории потоков были прежде всего мотивированы военными нуждами - благодаря связи между максимальными потоками и минимальными разрезами. Решение задачи о минимальном разрезе позволяло построить эффективный план бомбардировок системы транспортного сообщения противника. Помимо этого с практической точки зрения была крайне важна задача об эвакуации, на случай бомбардировок или чрезвычайных происшествий.
«Мирным» применением теории потоков являются всевозможные задачи связанные с транспортировкой грузов. В более простой модели ответ на этот вопрос дает задача о назначениях – обобщение задачи о максимальном паросочетании. Более сложные модели опираются на теорию динамических потоков, и здесь есть еще много задач для дальнейших исследований.
Библиография