Таблица 3
ВЕЛИЧИНА ПОСТОЯННОЙ ПЛАНКА,
ИЗМЕРЕННАЯ В ПЕРИОД С 1951 ПО 1988 гг.
(ОБЗОР ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ)
Автор |
Дата Постоянная Планка
(х10-34Дж/с)
Берден и Уотте | 1951 | 6,623 63 ± 0,000 16 |
Коэн и др. | 1955 | 6,625 17 ± 0,000 23 |
Кондон | 1963 | 6,625 60 ± 0,000 17 |
Коэн и Тейлор | 1973 | 6,626 176 ± 0,000 036 |
Коэн и Тейлор | 1988 | 6,626 075 5 ± 0,000004 0 |
Было сделано несколько попыток обнаружить изменение постоянной Планка по красному смещению спектров излучения сильно удаленных квазаров и звезд. Суть идеи заключалась в том, что, если бы величина этой фундаментальной константы изменилась, изменение можно было бы обнаружить, сравнивая излучение, возраст которого превышал несколько миллиардов лет, с намного более поздним излучением от сравнительно близко расположенных объектов. Было выявлено небольшое различие, которое привело к громкому заявлению, что величина постоянной Планка ежегодно изменяется примерно на 5/1013 Оппоненты указывают на то, что полученные результаты были предсказуемыми, поскольку все вычисления основывались на изначальном допущении о неизменности этой фундаментальной константы[265]. Нетрудно заметить, что повторяется прежний аргумент. Строго говоря, начальное допущение подразумевало неизменность произведения hc, но, поскольку величина с является константой по определению, отсюда следует и неизменность постоянной Планка h.
ИЗМЕНЕНИЕ ВЕЛИЧИНЫ ПОСТОЯННОЙ ТОНКОЙ СТРУКТУРЫ
Одна из проблем при регистрации изменений величины любой из фундаментальных констант заключается в том, что при обнаружении таких изменений бывает сложно определить, являются ли они следствием непостоянства самой константы или же причина заключается в изменении единиц измерения, с помощью которых определяется величина. Однако некоторые фундаментальные константы не имеют размерности, а выражаются только определенным числом, и поэтому вопрос о возможном изменении единиц измерения не возникает. Одной из таких безразмерных констант является отношение массы протона к массе электрона. Еще одним подобным примером может служить постоянная тонкой структуры. По этой причине некоторые специалисты в метрологии особенно подчеркивают, что «колебания величины физических "констант" следовало бы формулировать с использованием безразмерных постоянных»[266].
Следуя такому мнению, в этом разделе я рассматриваю доказательство изменений величины постоянной тонкой структуры (се), связанной с зарядом электрона, скоростью света в вакууме и постоянной Планка по формуле α = e2/2hcε0, где ε0 — диэлектрическая проницаемость свободного пространства. Эта константа является характеристикой интенсивности электромагнитных взаимодействий и равна приблизительно 1/137, но иногда выражается и обратной величиной. Постоянную тонкой структуры некоторые физики рассматривают как одно из главных космических чисел, которые могут помочь объяснить единую теорию.
В период с 1929 по 1941 гг. величина постоянной тонкой структуры увеличилась приблизительно на 0,2% — с 7,283 х (10-3) до 7,2976 х (10-3)[267]. Это изменение в значительной степени можно отнести на счет возрастания величины заряда электрона и отчасти — уменьшения скорости света в вакууме, о которых шла речь выше. Как и при определении численных значений других фундаментальных констант, имеются расхождения в результатах, полученных разными исследователями, а «лучшие» результаты были собраны и обобщены на основе обзора данных, имевшихся на каждый конкретный момент. Изменение этих согласованных результатов с 1941 по 1973 гг. приводится на ил. 17. Так же как и в случае с другими константами, изменения, как правило, значительно превышают величину допустимой погрешности. Например, увеличение численного значения этой константы за периоде 1951 по 1963 гг. превысило величину допустимой погрешности результатов, полученных в 1951 г. (стандартного отклонения), в 12 раз. Увеличение численного значения постоянной тонкой структуры, определенного в 1973 г., по сравнению с данными, полученными в 1963 г., примерно в пять раз превышало величину допустимой погрешности для данных 1963 г. Все численные значения приводятся в таблице 4.
Ил. 17. Лучшие результаты измерения постоянной тонкой структуры за период с 1941 по 1983 гг.
Таблица 4
ВЕЛИЧИНА ПОСТОЯННОЙ ТОНКОЙ
СТРУКТУРЫ, ИЗМЕРЕННАЯ ЗА ПЕРИОД
С 1951 ПО 1973 гг.
Автор | Дата | α (× 10-3) |
Берден и Уоттс | 1951 | 7,296 953 ± 0,000 028 |
Кондон | 1963 | 7,297 200 ± 0,000 033 |
Коэн и Тэйлор | 1973 | 7,297 350 ± 0,000 0060 |
Несколько исследователей в области космологии пришли к выводу, что постоянная тонкой структуры могла бы меняться на протяжении эволюции Вселенной[268]. Были предприняты попытки проверить эту гипотезу, анализируя спектр излучения звезд и квазаров. За основу было взято предположение, что расстояние от этих объектов до Земли пропорционально красному смещению спектров их излучения. По результатам измерений можно было предположить, что величина постоянной тонкой структуры или изменяется в крайне незначительной степени, или остается постоянной[269]. Однако, как и при всех других попытках доказать постоянство фундаментальных констант с помощью астрономических наблюдений, было сделано множество допущений, в том числе — о неизменности других констант, об истинности современных космологических теорий и о правомерности использования красного смещения при определении расстояния до космических объектов. Все эти допущения были и остаются недоказанными и оспариваются теми специалистами в области космологии и астрофизики, которые придерживаются иных воззрений[270].
ДЕЙСТВИТЕЛЬНО ЛИ КОНСТАНТЫ ИЗМЕНЯЮТСЯ?
Как мы уже убедились на приведенных выше примерах, эмпирические данные, получаемые в лабораторных экспериментах, выявляют различные изменения величины констант в зависимости от года их измерения. Похожие изменения обнаруживаются и при измерениях величины других фундаментальных констант. Для упорных ортодоксов эти факты никоим образом не ставят под сомнение постоянство самих констант, так как все отклонения можно попытаться объяснить той или иной ошибкой в эксперименте. Из-за постоянного улучшения экспериментальных методов и совершенствования лабораторного оборудования с наибольшим доверием всегда принято относиться к самым последним эмпирическим данным, и если они отличаются от ранее полученных результатов, предыдущие заведомо считаются неверными. Исключение составляют лишь те случаи, когда предшествующие данные подкреплены высоким авторитетом экспериментатора — как это произошло с Милликеном, измерявшим заряд электрона. Кроме того, специалисты по метрологии склонны переоценивать точность более современных измерений. Может быть, именно поэтому более поздние измерения нередко отличаются от более ранних на величину, превышающую допустимую погрешность. Если бы специалисты в метрологии правильно оценивали свои ошибки, изменения величины констант показали бы, что эти константы на самом деле флуктуируют. Наиболее показательный пример — уменьшение скорости света в вакууме в период с 1928 по 1945 гг. Было ли это реальным природным изменением — или феномен объяснялся исключительно коллективным обманом и самообманом исследователей?
До последнего времени существовало лишь две основные теории по поводу фундаментальных констант. Первая из них утверждает, что константы действительно являются постоянными, а все расхождения в эмпирических данных являются следствием той или иной ошибки. По мере того как наука прогрессирует, величина этих ошибок уменьшается. В случае постоянного возрастания точности экспериментов результаты будут все лучше и лучше согласовываться друг с другом, и в конце концов мы придем к истинному численному значению фундаментальной константы. Такой взгляд является общепринятым. Вторая теория возникла после того, как несколько специалистов в области теоретической физики высказали гипотезу, что одна или несколько фундаментальных констант могут непрерывно и с постоянной скоростью изменяться в ходе эволюции Вселенной и такие изменения возможно уловить с помощью астрономических наблюдений за сверхудаленными космическими объектами. Различные исследования с использованием подобного рода наблюдений подтвердили, что такие изменения возможны, но сами эти исследования не бесспорны. Они основывались на предположениях, которые сами были призваны доказать, что константы являются константами и что современные космологические теории остаются верными во всех смыслах.
Лишь немногих заинтересовала третья гипотеза, которой и посвящен данный раздел. Я допускаю возможность, что фундаментальные константы могут в определенных пределах колебаться относительно средней величины, которая и является истинной константой. Идея неизменности законов и констант — последний отголосок эры классической физики, в которой предполагалось, что в каждый момент времени и в каждой отдельно взятой точке пространства должна присутствовать привычная и в принципе всегда предсказуемая математическая упорядоченность. На практике ни в человеческой деятельности, ни в биологии, ни в атмосферных явлениях, ни даже в религии мы не наблюдаем ничего подобного. Революция хаоса показала, что этот совершенный порядок был лишь иллюзией[271]. Большая часть окружающего нас мира изначально склонна к хаосу.