Из теорем 1.1, 1.2, 1.3 сразу следуют некоторые важные утверждения:
Следствия.
Задача 1.
Даны две прямые a и b и не лежащая на них точка Р. Через Р проводятся различные пары прямых, пересекающих прямые a и b в точках А, С и B, D соответственно. М – точка пересечения AD и ВС. Доказать, что все такие точки М лежат на одной прямой, проходящей через точку пересечения прямых a и b.
Решение.
Пусть О – точка пересечения прямых a и b. Переведём прямую ОР в бесконечно удалённую. Тогда четырёхугольник ABDC будет параллелограммом; М, точка пересечения его диагоналей, будет лежать на прямой, параллельной прямым a и b и отстоящей от них на равные расстояния.
Задача 2.
Можно ли окрасить 2006 точек плоскости в красный цвет и 1003 – в синий так, чтобы любая прямая, проходящая через две точки разных цветов, содержала ещё одну из окрашенных точек и все окрашенные точки не лежали на одной прямой.
Решение.
Рассмотрим проективную плоскость и правильный 2006-угольник на ней. Все вершины 2006-угольника покрасим в красный цвет, а точки пересечения сторон с бесконечно удалённой прямой покрасим в синий цвет. Легко проверить, что этот набор точек обладает требуемым свойством. Осталось лишь сделать проективное преобразование так, чтобы на бесконечно удалённой прямой не осталось отмеченных точек…
Ответ: можно.
Теорема 1.4. Дана окружность и точка M внутри неё. Существует центральная проекция, при которой данная окружность переходит в окружность, а точка M – в её центр.
Доказательство. Пусть АВ – тот диаметр нашей окружности, на котором лежит точка M. Рассмотрим косой круговой конус, основанием которого является наша окружность, а вершиной такая точка О, что
. На прямых ОА и ОВ за точку О отложим точки В´ и А´ соответственно так, что ОВ=ОВ´ и ОА=ОА´:Пусть С´ – середина А´В´ и
. Применяя теорему синусов к треугольникам ОАС, ОВС, ОВ´С´ и ОС´А´, нетрудно получить соотношение , т.е. точка С в точности совпадает с точкой М. Теперь осталось заметить, что из соображений симметрии сечение нашего конуса плоскостью α, проходящей через прямую А´В´ перпендикулярно плоскости (АОВ), является окружностью, поэтому центральная проекция с центром О на плоскость α является искомой.Из доказательства этой теоремы следует также
Теорема 1.5: Любое проективное преобразование сохраняет какую-то окружность.
Теорема 1.6. Дана окружность и не пересекающая её прямая ℓ. Существует проективное преобразование, переводящее данную окружность в окружность, а ℓ – в бесконечно удалённую прямую.
Доказательство. Пусть А, В – произвольные точки прямой ℓ, АK, AL, BM, BN – касательные к окружности из точек А и В,
. По теореме 1.4 существует преобразование, сохраняющее нашу окружность, переводящее Р в её центр. При этом преобразовании отрезки KL и MN перейдут в диаметры окружности, поэтому А и В перейдут в бесконечно удалённые точки, а ℓ - в бесконечно удалённую прямую.Задача 3.
Доказать, что прямые, соединяющие вершины треугольника с точками касания противоположных сторон и вписанной окружности, пересекаются в одной точке.
Решение.
Пусть АВС – наш треугольник, А´, В´, С´ – точки касания вписанной окружности со сторонами треугольника,
. Проведём проективное преобразование, сохраняющее вписанную окружность и переводящее точку Т в её центр. Тогда AA´ и ВВ´ станут одновременно и высотами, и биссектрисами треугольника АВС, т.е. треугольник АВС перейдёт в правильный, а точка Т – в его центр. Значит СС´ проходит через Т.2. Проективные теоремы.
Ниже приводятся известные теоремы геометрии, которые легко доказываются применением проективного преобразования:
Теорема 2.1. (теорема Дезарга) Если прямые, содержащие соответственные стороны треугольников ABC и A´B´C´ (т.е. AB и A´B´, BC и B´C´, AC и A´C´), пересекаются в точках P, Q, R лежащих на одной прямой ℓ, то прямые, соединяющие соответственные вершины этих треугольников, пересекаются в одной точке.
Теорема 2.2. (теорема Паппа) Если точки А, В, С лежат на прямой ℓ, точки А´, В´, С´ - на прямой ℓ´, то точки P, Q, R пересечения прямых АВ´ и А´В, АС´ и А´С, ВС´ и В´С соответственно лежат на одной прямой.
Теорема 2.3. (теорема Паскаля) Точки пересечения противоположных сторон вписанного шестиугольника лежат на одной прямой.
Теорема 2.4. (теорема Брианшона) Главные диагонали описанного шестиугольника пересекаются в одной точке.
Не будем подробно проводить доказательство этих теорем, покажем лишь, какое преобразование сводит каждую из этих задач к очевидной:
Теорема 2.1 – проективное преобразование, переводящее прямую ℓ в бесконечно удалённую;
Теорема 2.2 – проективное преобразование, переводящее прямую PQ в бесконечно удалённую;
Теорема 2.3 – проективное преобразование, сохраняющее описанную окружность, переводящее прямую PQ в бесконечно удалённую, где P, Q – точки пересечения двух пар противоположных сторон шестиугольника;
Теорема 2.4 – проективное преобразование, сохраняющее вписанную окружность, переводящее точку пересечения двух диагоналей в центр этой окружности.
3. Полярное соответствие, принцип двойственности.
Определение. Полярное соответствие на плоскости относительно окружности с центром О и радиусом r ставит в соответствие каждой точке А, отличной от О, прямую а, перпендикулярную ОА и пересекающую луч ОА в такой точке А´, что
. Прямая а называется полярой точки А, а точка А – полюсом прямой а. Полярой точки О является бесконечно удалённая прямая, а полярой бесконечно удалённой точки – прямая, содержащая диаметр, перпендикулярный проходящим через неё параллельным прямым.Свойства.
Первое свойство является очевидным, а каждое следующее свойство сразу вытекает из предыдущих.
Следствие. (принцип двойственности) Пусть доказано некоторое проективное утверждение. Тогда верным будет и утверждение, полученное из доказанного взаимной заменой следующих терминов:
(точка)↔(прямая)
(лежать на прямой)↔(проходить через точку)
(лежать на окружности)↔(касаться окружности)
Двойственны, например, теоремы Паскаля и Брианшона.
Теорема 3.1. (теорема обратная теореме Дезарга) Если прямые, соединяющие соответственные вершины треугольников ABC и A´B´C´, пересекаются в одной точке, то прямые, содержащие соответственные стороны этих треугольников, пересекаются в точках, лежащих на одной прямой.
Доказательство. Эта теорема двойственна теореме 2.1. (теореме Дезарга).
Часть V. Круговые преобразования пространства.
1. Инверсия пространства.
Определение. Пусть в пространстве дана сфера S с центром О и радиусом R. Инверсией относительно сферы S называется преобразование, переводящее произвольную точку А, отличную от О, в точку А´, лежащую на луче ОА такую, что
. S – сфера инверсии, О – центр, R – радиус инверсии.Дополним пространство бесконечно удалённой точкой и поставим её в соответствие точке О (тогда, очевидно, бесконечно удалённая точка перейдёт при инверсии в точку О).
Будем считать, что любая прямая и любая плоскость содержат бесконечно удалённую точку пространства.
Определение. Углом между двумя пересекающимися сферами называется угол между касательными плоскостями к сферам, проведёнными через любую из точек пересечения сфер. Углом между пересекающимися сферой и плоскостью называется угол между касательной плоскости к сфере, проведённой через любую из точек пересечения сферы и плоскости, и данной плоскостью.
Определение. Углом между двумя пересекающимися окружностями (окружностью и прямой) в пространстве называется угол между касательными к окружностям, проведёнными через любую из точек пересечения окружностей. Углом между пересекающимися окружностью и прямой называется угол между касательной к окружности, проведённой через любую из точек пересечения окружности и прямой, и данной прямой.
С помощью движений пространства легко доказать корректность этих определений (т.е., что угол не зависит от точки пересечения сфер (окружностей), которую мы рассмотрели). Например, для сфер можно перевести одну точку пересечения в другую, сохранив сферы, поворотом вокруг оси, проходящей через центры сфер.