Смекни!
smekni.com

на тему «Геометрические преобразования» (стр. 1 из 9)

Реферат на тему

«Геометрические преобразования»

ученика 11 класса “Б” школы №192

Печёнкина Николая

Руководитель:

Гладкова Елена Борисовна

Москва, 2006 г.

Введение.

Геометрические преобразования являются достаточно поздним разделом математики. Первые геометрические преобразования стали рассматриваться в XVII веке, а проективные преобразования появились лишь в начале XIX века.

В алгебре рассматриваются различные функции. Функция f каждому числу х из области определения функции ставит в соответствие некоторое число f(x) – значение функции f в точке х. В геометрии рассматриваются функции, у которых другие области определения и множества значений. Они каждой точке ставят в соответствие точку. Эти функции называются геометрическими преобразованиями.

Геометрические преобразования имеют большое значение в геометрии. С помощью геометрических преобразований определяются такие важные геометрические понятия, как равенство и подобие фигур. Благодаря геометрическим преобразованиям, многие разрозненные факты геометрии укладываются в стройную теорию.

В реферате, в основном, речь пойдёт о преобразованиях пространства. Будут рассмотрены все движения, подобия, круговые и аффинные преобразования пространства, а также аффинные и проективные преобразования плоскости. Для каждого преобразования будут рассмотрены его свойства и примеры применения к решению геометрических задач.

Для начала обратимся к некоторым основным понятиям, которые будут необходимы нам для работы с преобразованиями. Остановимся на двух терминах: расстояние и преобразование. Итак, что мы будем понимать под этими словами:

Определение. Расстоянием между двумя точками будем называть длину отрезка с концами в этих точках.

Определение. Преобразованием множества будем называть взаимно однозначное отображение этого множества на себя.

Теперь перейдём к рассмотрению отдельных видов геометрических преобразований.

Часть I. Движения пространства.

1. Общие свойства движений.

Определение. Преобразование пространства называется движением, если оно сохраняет расстояния между точками.

Свойства движений.

  1. Преобразование, обратное к движению, – движение.
  2. Композиция движений – движение.
  3. При движении прямая переходит в прямую, луч – в луч, отрезок – в отрезок, плоскость – в плоскость, полуплоскость – в полуплоскость.
  4. Образом плоского угла при движении является плоский угол той же величины.
  5. Движение сохраняет величину угла между прямыми, между прямой и плоскостью, между плоскостями.
  6. Движение сохраняет параллельность прямых, прямой и плоскости, плоскостей.

Доказательства свойств.

1 и 2. Следуют из определения движения.

  1. Пусть точки А, Х и В лежат на одной прямой, причём точка Х лежит между А и В. Тогда АХ+ХВ=АВ. Пусть точки А´, Х´, В´ – образы точек А, Х, В при движении. Тогда А´Х´+Х´В´=А´В´ (из определения движения). А отсюда следует, что точки A´, X´, B´ лежат на одной прямой, причём Х´ лежит между А´ и В´.
    Из доказанного утверждения сразу следует, что при движении прямая переходит в прямую, луч – в луч, отрезок – в отрезок.

Для плоскости доказательство можно провести так. Пусть a, b – две пересекающиеся прямые нашей плоскости α, a´, b´ – их образы. Очевидно, a´ и b´ пересекаются. Пусть α´ – плоскость, содержащая прямые a´, b´. Докажем, что α´ – образ плоскости α. Пусть М – произвольная точка плоскости α, не лежащая на прямых a и b. Проведём через M прямую c, пересекающую прямые a и b в различных точках. Образом этой прямой является прямая с´, пересекающая прямые a´, b´ в различных точках. Значит,

и М´, образ точки М, лежит в плоскости α´. Итак, образ любой точки плоскости α лежит в плоскости α´. Аналогично доказывается, что прообраз любой точки плоскости α´ лежит в плоскости α. Отсюда α´ – образ плоскости α.

Теперь уже несложно доказать утверждение и для полуплоскости. Надо лишь дополнить полуплоскость до плоскости, рассмотреть прямую а, ограничивающую полуплоскость, и её образ а´, а затем доказать от противного, что образы любых двух точек полуплоскости лежат по одну сторону от а´.

  1. Следует из свойства 3.
  2. Следует из свойства 4 и определения угла между прямыми (прямой и плоскостью, двумя плоскостями) в пространстве.
  3. Предположим противное, т.е. пусть образы наших параллельных прямых (прямой и плоскости, плоскостей) пересекаются (в случае параллельных прямых ещё надо показать, что их образы не могут быть скрещивающимися прямыми, но это сразу следует из того, что плоскость, содержащая эти прямые, перейдёт в плоскость). Тогда рассмотрим их общую точку. У неё будет два прообраза, что невозможно по определению преобразования.

Определение. Фигура Ф называется равной фигуре Ф´, если существует движение, переводящее Ф в Ф´.

2. Множество неподвижных точек движений.

Определение. Неподвижной точкой (прямой, плоскостью) преобразования называется такая точка (прямая, плоскость) пространства, которая при этом преобразовании переходит в себя.

Теорема 2.1. Если при движении неподвижны две точки А и В, то неподвижны все точки прямой АВ.

Доказательство. Пусть Х произвольная точка прямой АВ, отличная от А и В. Если X→Х´ и Х≠X´, то Х´ лежит на АВ и из определения движения следует, что А – середина ХХ´ и В – середина ХХ´, чего не может быть. Значит, Х переходит при этом движении в себя. Отсюда, все точки прямой АВ неподвижны.

Теорема 2.2. Если при движении неподвижны три точки А, В и С, не лежащие на одной прямой, то неподвижны все точки плоскости (АВС).

Доказательство. По теореме 2.1. неподвижны все точки прямых АВ, АС и ВС. Теперь, пусть Х – произвольная точка плоскости (АВС), не принадлежащая прямым АВ, АС и ВС. Пусть М – произвольная точка внутри ∆АВС (например, точка пересечения медиан). Прямая МХ пересекает стороны нашего треугольника в некоторых точках K и N, которые являются неподвижными. Тогда по теореме 2.1. неподвижны все точки прямой KN, в том числе и точка Х. Отсюда, все точки плоскости (АВС) являются неподвижными.

Теорема 2.3. Если при движении неподвижны четыре точки, не лежащие в одной плоскости, то неподвижны все точки пространства.

Доказательство. Теорема выводится из теоремы 2.2. так же, как и теорема 2.2. выводится из теоремы 2.1.

Следствие. Множеством неподвижных точек движения пространства является либо пустое множество, либо точка, либо прямая, либо плоскость, либо всё пространство.

3. Виды движений.


3.1. Тождественное преобразование.

Определение. Тождественным преобразованием Е пространства называется преобразование, при котором каждая точка пространства переходит в себя.


Очевидно, тождественное преобразование является движением.


3.2. Параллельный перенос.

Определение. Пусть в пространстве задан вектор

. Параллельным переносом
пространства на вектор
называется преобразование, при котором каждая точка М отображается в такую точку М´, что
.


Теорема 3.2. Параллельный перенос – движение.

Доказательство. Пусть А´, В´ – образы точек А, В при параллельном переносе на вектор

. Достаточно показать, что АВ=А´В´, что следует из равенства:

.

Свойство переноса. Параллельный перенос переводит прямую (плоскость) в себя или в параллельную ей прямую (плоскость).

Доказательство. При доказательстве теоремы 3.2, мы доказали, что при параллельном переносе сохраняются вектора. Значит, сохраняются направляющие вектора прямых и векторы нормали плоскостей. Отсюда и следует наше утверждение.

3.3 Поворот вокруг оси, симметрия относительно прямой.

Определение. Поворотом

пространства около оси ℓ на заданный угол φ называется такое преобразование пространства, при котором в каждой плоскости, перпендикулярной прямой ℓ, проводится поворот на угол φ вокруг точки её пересечения с прямой ℓ.

Теорема 3.3.1. Поворот вокруг оси – движение.

Доказательство. Пусть А, В – произвольные точки пространства, А´, В´ – их образы при повороте вокруг оси. Нам достаточно показать, что АВ=А´В´. Проведём через точки А и В соответственно плоскости α и β, перпендикулярные прямой ℓ. Если α и β совпадают, то равенство АВ=А´В´ следует из аналогичной плоской теоремы. Если нет, то опустим перпендикуляр АС из точки А на плоскость β (

. Пусть С´ – образ точки С при нашем повороте. По определению поворота точка А´ лежит в плоскости α, точки В´, С´ – лежат в плоскости β; СВ=С´В´ по аналогичной теореме на плоскости. Кроме того, как легко проверить, АСС´А´ – прямоугольник. Отсюда, имеем равные прямоугольные треугольники АСВ и А´С´В´ (в случае, если В совпадает с С, нам хватит и того, что АСС´А´ – прямоугольник). Значит, равны и их гипотенузы АВ=А´В´.