Смекни!
smekni.com

Экскурс в историю Алгебраические софизмы (стр. 2 из 2)

Где ошибка???

Данное свойство пропорции может оказаться неверным, если некоторые члены пропорции отрицательны.

Геометрические софизмы.

1. «Через точку на прямую можно опустить два перпендикуляра»

Попытаемся "доказать", что через точку, лежащую вне прямой, к этой прямой можно провести два перпендикуляра. С этой целью возьмем треугольник АВС. На сторонах АВ и ВС этого треугольника, как на диаметрах, построим полуокружности. Пусть эти полуокружности пересекаются со стороной АС в точках Е и Д. Соединим точки Е и Д прямыми с точкой В. Угол АЕВ прямой, как вписанный, опирающийся на диаметр; угол ВДС также прямой. Следовательно, ВЕ перпендикулярна АС и ВД перпендикулярна АС. Через точку В проходят два перпендикуляра к прямой АС.

Где ошибка???

Рассуждения, о том, что из точки на прямой можно опустить два перпендикуляра, опирались на ошибочный чертеж. В действительности полуокружности пересекаются со стороной АС в одной точке, т.е. ВЕ совпадает с ВD. Значит, из одной точки на прямой нельзя опустить два перпендикуляра.

2. « Спичка вдвое длиннее телеграфного столба»

Пусть а дм- длина спички и b дм - длина столба. Разность между b и a обозначим через c .

Имеем b - a = c, b = a + c. Перемножаем два эти равенства по частям, находим: b2 - ab = ca + c2. Вычтем из обеих частей bc. Получим: b2- ab - bc = ca + c2 - bc, или b(b - a - c) = - c(b - a - c), откуда

b = - c, но c = b - a, поэтому b = a - b, или a = 2b.

Где ошибка???

В выражении b(b-a-c )= -c(b-a-c) производится деление на (b-a-c), а этого делать нельзя, так как b-a-c=0.Значит, спичка не может быть вдвое длиннее телеграфного столба.

3. «Катет равен гипотенузе»

Угол С равен 90о, ВД - биссектриса угла СВА, СК = КА, ОК перпендикулярна СА, О - точка пересечения прямых ОК и ВД, ОМ перпендикулярна АВ, ОL перпендикулярна ВС. Имеем: треугольник LВО равен треугольнику МВО, ВL = ВМ, ОМ = ОL = СК = КА, треугольник КОА равен треугольнику ОМА (ОА - общая сторона, КА = ОМ, угол ОКА и угол ОМА - прямые), угол ОАК = углу МОА, ОК = МА = СL, ВА = ВМ + МА, ВС = ВL + LС, но ВМ = ВL, МА = СL, и потому ВА = ВС.

Где ошибка???

Рассуждения, о том, что катет равен гипотенузе опирались на ошибочный чертеж. Точка пересечения прямой, определяемой биссектрисой ВD и серединного перпендикуляра к катету АС, находится вне треугольника АВС.

Арифметические софизмы.

1. « Если А больше В, то А всегда больше, чем 2В»

Возьмем два произвольных положительных числа А и В, такие, что А>В.

Умножив это неравенство на В, получим новое неравенство АВ>В*В, а отняв от обеих его частей А*А, получим неравенство АВ-А*А>В*В-А*А, которое равносильно следующему:

А(В-А)>(В+А)(В-А). (1)

После деления обеих частей неравенства (1) на В-А получим, что

А>В+А (2),

А прибавив к этому неравенству почленно исходное неравенство А>В, имеем 2А>2В+А, откуда

А>2В.

Итак, если А>В, то А>2В. Это означает, к примеру, что из неравенства 6>5 следует, что 6>10.

Где ошибка???

Здесь совершен неравносильный переход от неравенства (1) к неравенству (2).

Действительно, согласно условию А>В, поэтому В-А<0.Это означает, что обе части неравенства (1) делятся на отрицательное число. Но согласно правилу преобразования неравенств при делении или умножении неравенства на одно и то же отрицательное число знак неравенства необходимо изменить на противоположный. С учетом сказанного из неравенства (1) вместо неравенства (2) получим неравенство А<В+А, прибавив к которому почленно исходное неравенство В<А, получим просто исходное неравенство А+В<В+2А

2. «Один рубль не равен ста копейкам»

Известно, что любые два неравенства можно перемножать почленно, не нарушая при этом равенства, т.е.

Если a=b, c=d, то ac=bd.

Применим это положение к двум очевидным равенствам

1 р.=100 коп, (1)

10р.=10*100коп.(2)

перемножая эти равенства почленно, получим

10 р.=100000 коп. (3)

и, наконец, разделив последнее равенство на 10 получим, что

1 р.=10 000 коп.

таким образом, один рубль не равен ста копейкам.

Где ошибка???

Ошибка, допущенная в этом софизме, состоит в нарушении правил действия с именованными величинами: все действия, совершаемые над величинами, необходимо совершать также и над их размерностями.

Действительно, перемножая равенства (1) и (2), мы получим не (3), а следующее равенство

2 2

10 р. =100 000 к . ,

которое после деления на 10 дает

2 2

1 р. = 10 000 коп., (*)

а не равенство 1р=10 000 к, как это записано в условии софизма. Извлекая квадратный корень из равенства (*), получаем верное равенство 1р.=100 коп.

3. «Число, равное другому числу, одновременно и больше, и меньше его».

Возьмем два произвольных положительных равных числа А и В и напишем и напишем для них следующие очевидные неравенства:

А>-В и В>-В. (1)

Перемножив оба этих неравенства почленно, получим неравенство

А*В>В*В, а после его деления на В, что вполне законно, ведь В>0, придем к выводу, что

А>В. (2)

Записав же два других столь же бесспорных неравенства

В>-А и А>-А, (3)

Аналогично предыдущему получим, что В*А>А*А, а разделив на А>0, придем к неравенству

А>В. (4)

Итак, число А, равное числу В, одновременно и больше, и меньше его.

Где ошибка???

Здесь совершен неравносильный переход от одного неравенства к другому при недопустимом перемножении неравенств.

Проделаем правильные преобразования неравенств.

Запишем неравенство (1) в виде А+В>0, В+В>0.

Левые части этих неравенств положительны, следовательно, умножая почленно оба эти неравенства

(А+В)(В+В)>0, или А>-В,

что представляет собой просто верное неравенство.

Аналогично предыдущему, записывая неравенства (3) в виде

(В+А)>0, А+А>0, получим просто верное неравенство В>-А.

4. «Ахиллес никогда не догонит черепаху»

Древнегреческий философ Зенон доказывал, что Ахиллес, один из самых сильных и храбрых героев, осаждавших древнюю Трою, никогда не догонит черепаху, которая, как известно, отличается крайне медленной скоростью передвижения..

Вот примерная схема рассуждений Зенона. Предположим, что Ахиллес и черепаха начинают свое движение одновременно, и Ахиллес стремится догнать черепаху. Примем для определенности, что Ахиллес движется в 10 раз быстрее черепахи, и что их отделяют друг от друга 100 шагов.

Когда Ахиллес пробежит расстояние в 100 шагов, отделяющее его от того места, откуда начала двигаться черепаха, то в этом месте он туже ее не застанет, так как она пройдет вперед расстояние в 10 шагов. Когда Ахиллес минует и эти 10 шагов, то и там черепахи уже не будет, поскольку она успеет перейти на 1 шаг вперед. Достигнув и этого места, Ахиллес опять не найдет там черепахи, потому что она успеет пройти расстояние, равное 1/10 шага, и снова окажется несколько впереди его. Это рассуждение можно продолжать до бесконечности, и придется признать, что быстроногий Ахиллес никогда не догонит медленно ползающую черепаху.

Где ошибка???

Рассматриваемый софизм Зенона даже на сегодняшний день далек от своего окончательного разрешения, поэтому здесь я обозначу только некоторые его аспекты.

Сначала определим время t, за которое Ахиллес догонит черепаху. Оно легко находится из уравнения a+vt=wt, где а -расстояние между Ахиллесом и черепахой до начала движения, v и w – скорости черепахи и Ахиллеса соответственно. Это время при принятых в софизме условиях (v=1 шаг/с и w=10 шагов/с) равно 11, 111111… сек.

Другими словами, примерно через 11, 1 с. Ахиллес догонит черепаху. Подойдем теперь к утверждениям софизма с точки зрения математики, проследим логику Зенона. Предположим, что Ахиллес должен пройти столько же отрезков, сколько их пройдет черепаха. Если черепаха до момента встречи с Ахиллесом пройдет m отрезков, то Ахиллес должен пройти те же m отрезков плюс еще один отрезок, который разделял их до начала движения. Следовательно, мы приходим к равенству m=m+1, что невозможно. Отсюда следует, что Ахиллес никогда не догонит черепаху!!!

Итак, путь, пройденный Ахиллесом, с одной стороны, состоит из бесконечной последовательности отрезков, которые принимают бесконечный ряд значений, а с другой стороны, эта бесконечная последовательность, очевидно не имеющая конца, все же завершилась, и завершилась она своим пределом, равном сумме геометрической прогрессии.

Трудности, которые возникают при оперировании понятиями непрерывного и бесконечного и столь мастерски вскрываются парадоксами и софизмами Зенона, до сих пор не преодолены, а разрешение противоречий, содержащихся в них, послужило более глубокому осмыслению основ математики.

Заключение.

О математических софизмах можно говорить бесконечно много, как и о математике в целом. Изо дня в день рождаются новые парадоксы, некоторые из них останутся в истории, а некоторые просуществуют один день. Софизмы есть смесь философии и математики, которая не только помогает развивать логику и искать ошибку в рассуждениях. Буквально вспомнив, кто же такие были софисты, можно понять, что основной задачей было постижение философии. Но тем не менее, в нашем современном мире, если и находятся люди, которым интересны софизмы, в особенности математические, то они изучают их как явление только со стороны математики, чтобы улучшить навыки правильности и логичности рассуждений.

Понять софизм как таковой (решить его и найти ошибку) получается не сразу. Требуются определенный навык и смекалка. Что касается меня, то некоторые софизмы приходилось разбирать по нескольку раз, чтобы действительно в них разобраться, некоторые же наоборот, казались очень простыми. Развитая логика мышления поможет не только в решении каких-нибудь математических задач, но еще может пригодиться в жизни.

Исторические сведения о софистике и софистах помогли мне разобраться, откуда же все-таки началась история софизмов. По началу, я думала, что софизмы бывают исключительно математические. Причем в виде конкретных задач, но, начав исследование в этой области, я поняла, что софистика-это целая наука, а именно математические софизмы - это лишь часть одного большого течения.

Исследовать софизмы действительно очень интересно и необычно. Порой сам попадаешься на уловки софиста, на столь безукоризненность его рассуждений. Перед тобой открывается какой-то особый мир рассуждений, которые поистине кажутся верными. Благодаря софизмам и парадоксам можно научится искать ошибки в рассуждениях других, научится грамотно строить свои рассуждения и логические объяснения. Если есть желание, то можно стать искусным софистом, добиться исключительного мастерства в искусстве красноречия или просто на досуге проверить свою смекалку.

Список литературы.

1. А.Г. Мадера, Д.А. Мадера «Математические софизмы»

Москва, «Просвещение», 2003г.

2. Ф.Ф. Нагибин, Е.С. Канин «Математическая шкатулка»

Москва, «Просвещение», 1988г.

«Большая энциклопедия Кирилла и Мефодия 2004г