у =B0+B1x
Она позволяет получить значения эндогенной переменной с через переменную х. Рассчитав коэффициенты приведенной формы модели (А0, А1, В0, В1, можно перейти к коэффициентам структурной модели а и b, подставив в первое уравнение приведенной формы выражение переменной х из второго уравнения приведенной формы модели. Приведенная форма модели, хотя и позволяет получить значения эндогенной переменной через значения экзогенных переменных, аналитически уступает структурной форме модели, так как в ней отсутствуют оценки взаимосвязи между эндогенными переменными.
3.ПРОБЛЕМА ИДЕНТИФИКАЦИИ
При переходе от приведенной формы модели к структурной исследователь сталкивается с проблемой идентификации. Идентификация - это единственность соответствия между приведенной и структурной формами модели.
Рассмотрим проблему идентификации для случая с двумя эндогенными переменными. Пусть структурная модель имеет вид:
y^1=b12y2+a11x1+a12x2+…+a1mxm,y^2=b21y1+a21x1+a22x2+…+a2mxm.
где yl и у2 — совместные зависимые переменные.
Из второго уравнения можно выразить yl следующей формулой:
Тогда в системе имеем два уравнения для эндогенной переменной у1с одним и тем же набором экзогенных переменных, но с разными коэффициентами при них:
Наличие двух вариантов для расчета структурных коэффициентов в одной и той же модели связано с неполной ее идентификацией. Структурная модель в полном виде, состоящая в каждом уравнении системы из и эндогенных и т экзогенных переменных, содержит n(n - 1 + т) параметров. Так, при n = 2 и т = 3 полный вид структурной модели составит:
y^1=b12y2+a11x1+a12x2+a13x3,y^2=b21y1+a21x1+a22x2+a23x3.
Как видим, модель содержит восемь структурных коэффициентов, что соответствует выражению n • (n — 1 + m).
Приведенная форма модели в полном виде содержит и/и параметров. Для нашего примера это означает наличие шести коэффициентов приведенной формы модели. В этом можно убедиться, обратившись к приведенной форме модели, которая будет иметь вид:
Действительно, она включает в себя шесть коэффициентов 5,у.
На основе шести коэффициентов приведенной формы модели требуется определить восемь структурных коэффициентов рассматриваемой структурной модели, что, естественно, не может привести к единственности решения. В полном виде структурная модель содержит большее число параметров, чем приведенная форма модели. Соответственно и • (и — 1 + /и) параметров структурной модели не могут быть однозначно определены из и/и параметров приведенной формы модели.
Для того чтобы получить единственно возможное решение для структурной модели, необходимо предположить, что некоторые из структурных коэффициентов модели ввиду слабой взаимосвязи признаков с эндогенной переменной из левой части системы равны нулю. Тем самым уменьшится число структурных коэффициентов модели. Так, если предположить, что в нашей модели a13 = 0 и a21 = 0, то структурная модель примет вид:
y^1=b12y2+a11x1+a12x2,y^2=b21y1+a21x1+a22x2.
В такой модели число структурных коэффициентов не превышает число коэффициентов приведенной модели, которое равно шести. Уменьшение числа структурных коэффициентов модели возможно и другим путем: например, приравниванием некоторых коэффициентов друг к другу, т. е. путем предположений, что их воздействие на формируемую эндогенную переменную одинаково. На структурные коэффициенты могут накладываться, например, ограничения вида bij + аij = 0.
С позиции идентифицируемости структурные модели можно подразделить на три вида:
• идентифицируемые;
• неидентифицируемые;
• сверхидентифицируемые.
Модель идентифицируема, если все структурные ее коэффициенты определяются однозначно, единственным образом по коэффициентам приведенной формы модели, т. е. если число параметров структурной модели равно числу параметров приведенной формы модели. В этом случае структурные коэффициенты модели оцениваются через параметры приведенной формы модели и модель идентифицируема. Рассмотренная выше структурная модель (1.4) с двумя эндогенными и тремя экзогенными (предопределенными) переменными, содержащая шесть структурных коэффициентов, представляет собой идентифицируемую модель.
Модель неидентифицируема, если число приведенных коэффициентов меньше числа структурных коэффициентов, и в результате структурные коэффициенты не могут быть оценены через коэффициенты приведенной формы модели. Структурная модель в полном виде (1.3), содержащая п эндогенных и т предопределенных* переменных в каждом уравнении системы, всегда неидентифицируема.
Модель сверхидентифицируема, если число приведенных коэффициентов больше числа структурных коэффициентов. В этом случае на основе коэффициентов приведенной формы можно получить два или более значений одного структурного коэффициента. В этой модели число структурных коэффициентов меньше числа коэффициентов приведенной формы. Так, если в структурной модели полного вида (1.3) предположить нулевые значения не только коэффициентов а13 и а21(как в модели (1.4)),
но и a22 = 0 система уравнений станет сверхидентифицируемой:
В ней пять структурных коэффициентов не могут быть однозначно определены из шести коэффициентов приведенной формы модели. Сверхидентифицируемая модель в отличие от неидентифицируемой модели практически решаема, но требует для этого специальных методов исчисления параметров.
Структурная модель всегда представляет собой систему совместных уравнений, каждое из которых необходимо проверять на идентификацию. Модель считается идентифицируемой, если каждое уравнение системы идентифицируемо. Если хотя бы одно из уравнений системы неидентифицируемо, то и вся модель считается неидентифицируемой. Сверхидентифицируемая модель содержит хотя бы одно сверхидентифицируемое уравнение.
Выполнение условия идентифицируемости модели проверяется для каждого уравнения системы. Для того чтобы уравнение было идентифицируемо, нужно, чтобы число предопределенных переменных, отсутствующих в данном уравнении, но присутствующих в системе, было равно числу эндогенных переменных в данном уравнении без одного.
Если обозначить число эндогенных переменных в j-м уравнении системы через Н, а число экзогенных (предопределенных) переменных, которые содержатся в системе, но не входят в данное уравнение, — через D, то условие идентифицируемости модели может быть записано в виде следующего счетного правила:
D + 1 = Н— уравнение идентифицируемо;
D + 1 < Н — уравнение неидентифицируемо;
D + 1 > Н— уравнение сверхидентифицируемо.
Предположим, рассматривается следующая система одновременных уравнений:
Первое уравнение точно идентифицируемо, ибо в нем присутствуют три эндогенные переменные — у1, у2, у3, т. е. Н = 3, и две экзогенные переменные — x1, и х2, число отсутствующих экзогенных переменных равно двум — x3 и х4, D = 2. Тогда имеем равенство: D + 1 = Н, т. е. 2 + 1 = 3, что означает наличие идентифицируемого уравнения.
Во втором уравнении системы H=2(yl и y2) и D= I (x4). Равенство D + 1 = Н, т.е. 1 + 1 = 2. Уравнение идентифицируемо.
В третьем уравнении системы Н=3(у1, у2, у3), a D = 2(xl и х2). Следовательно, по счетному правилу D + 1 = Н, и это уравнение идентифицируемо. Таким образом, система (5.6) в целом идентифицируема.
Предположим, что в рассматриваемой модели a2l = 0 и a33 = 0. Тогда система примет вид:
Первое уравнение этой системы не изменилось. Система по-прежнему содержит три эндогенные и четыре экзогенные переменные, поэтому для него D = 2 при Н= 3, и оно, как и в предыдущей системе, идентифицируемо. Второе уравнение имеет H=2 u D = 2(xl, х4), так как 2 + 1 > 2. Данное уравнение сверхидентифицируемо. Также сверхидентифицируемым оказывается и третье уравнение системы, где Н= 3 (у1, у2, у3) и D=3 (x1x2, x3), т.е. счетное правило составляет неравенство: 3 + 1 > 3 или D + 1>Н. Модель в целом является сверхидентифицируемой.