Предположим, что последнее уравнение системы с тремя эндогенными переменными имеет вид:
т. е. в отличие от предыдущего уравнения в него включены еще две экзогенные переменные, участвующие в системе, — х1и х2. В этом случае уравнение становится неидентифицируемым, ибо при Н = 3, D = 1 (отсутствует только х3) и D + 1 < Я, 1 + 1 < 3. Итак, несмотря на то, что первое уравнение идентифицируемо, второе сверхидентифицируемо, вся модель считается неидентифицируемой и не имеет статистического решения.
Для оценки параметров структурной модели система должна быть идентифицируема или сверхидентифицируема.
Рассмотренное счетное правило отражает необходимое, но недостаточное условие идентификации. Более точно условия идентификации определяются, если накладывать ограничения на коэффициенты матриц параметров структурной модели. Уравнение идентифицируемо, если по отсутствующим в нем переменным (эндогенным и экзогенным) можно из коэффициентов при них в других уравнениях системы получить матрицу, определитель которой не равен нулю, а ранг матрицы не меньше, чем число эндогенных переменных в системе без одного.
Целесообразность проверки условия идентификации модели через определитель матрицы коэффициентов, отсутствующих в данном уравнении, но присутствующих в других уравнениях, объясняется тем, что возможна ситуация, когда для каждого уравнения системы выполнено счетное правило, а определитель матрицы названных коэффициентов равен нулю. В этом случае соблюдается лишь необходимое, но недостаточное условие идентификации.
Обратимся к следующей структурной модели:
Проверим каждое уравнение системы на необходимое и достаточное условия идентификации. Для первого уравнения Н= 3 (y1, y2, yз) и D = (x3 и x4 отсутствуют), т. е. D + 1 =H, необходимое условие идентификации выдержано, поэтому уравнение точно идентифицируемо. Для проверки на достаточное условие идентификации заполним следующую таблицу коэффициентов при отсутствующих в первом уравнении переменных, в которой определитель матрицы (detA) коэффициентов равен нулю.
Матрица коэффициентов (1)
Уравнение | Переменные | |
х3 | x4 | |
2 3 | a23 0 | a24 0 |
Следовательно, достаточное условие идентификации не выполняется и первое уравнение нельзя считать идентифицируемым.
Для второго уравнения Н = 2 (yl и у2), D = 1 (отсутствует х1) счетное правило дает утвердительный ответ: уравнение идентифицируемо (D + 1 = Н).
Достаточное условие идентификации выполняется. Коэффициенты при отсутствующих во втором уравнении переменных составят.
Матрица коэффициентов (2)
Уравнение | Переменные | |
yз | x1 | |
1 3 | b13 -1 | a11 a31 |
Согласно таблице detA = 0, а ранг матрицы равен 2, что соответствует следующему критерию: ранг матрицы коэффициентов должен быть не меньше числа эндогенных переменных в системе без одной. Итак, второе уравнение точно идентифицируемо.
Третье уравнение системы содержит Н = 3 и D = 2, т. е. по необходимому условию идентификации оно точно идентифицируемо (D + 1 = Н). Противоположный вывод имеем, проверив уравнение на достаточное условие идентификации. Составим таблицу коэффициентов при переменных, отсутствующих в третьем уравнении, в которой detA = 0.
Матрица коэффициентов (3)
Уравнение | Переменные | |
x3 | x4 | |
1 2 | 0 x23 | 0 x24 |
Из таблицы видно, что достаточное условие идентификации не выполняется. Уравнение неидентифицируемо. Следовательно, рассматриваемая в целом структурная модель, идентифицируемая по счетному правилу, не может считаться идентифицируемой исходя из достаточного условия идентификации.
В эконометрических моделях часто наряду с уравнениями, параметры которых должны быть статистически оценены, используются балансовые тождества переменных, коэффициенты при которых равны ±1. В этом случае, хотя само тождество и не требует проверки на идентификацию, ибо коэффициенты при переменных в тождестве известны, в проверке на идентификацию собственно структурных уравнений системы тождества участвуют.
Например, рассмотрим эконометрическую модель экономики страны:
где
у1 - расходы на конечное потребление данного года;
А — свободный член уравнения;
е - случайные ошибки;
У2 — валовые инвестиции в текущем году;
x3 — .валовой доход предыдущего года;
y3— расходы на заработную плату в текущем году;
y4 — валовой доход за текущий год;
х2 - государственные расходы текущего года.
В этой модели четыре эндогенные переменные у1, у2, у3, у4, причем переменная у4 задана тождеством. Поэтому статистическое решение практически необходимо только для первых трех уравнений системы, которые нужно проверить на идентификацию. Модель содержит две предопределенные переменные — экзогенную х2и лаговую x1.
При практическом решении задачи на основе статистической информации за ряд лет или по совокупности регионов за один год в уравнениях для эндогенных переменных у1 у2, y3 обычно содержится свободный член A01, A02, A03, значение которого аккумулирует влияние неучтенных в уравнении факторов и не влияет на определение идентифицируемости модели.
Поскольку фактические данные об эндогенных переменных y1 ,y2,y3, могут отличаться от теоретических, постулируемых моделью, принято в модель включать случайную составляющую для каждого уравнения системы, исключив тождества. Случайные составляющие (возмущения) обозначены через е1 е2 и e3. Они не влияют на решение вопроса об идентификации модели.
В рассматриваемой эконометрической модели первое уравнение системы точно идентифицируемо, ибо Н = 3 и D = 2, и выполняется необходимое условие идентификации (D + 1 = Н). Кроме того, выполняется и достаточное условие идентификации, т. е. ранг матрицы равен 3, а определитель ее не равен 0 : detA равен — а31, что видно из следующей таблицы:
Уравнение | y2 | х1 | x2 |
2 | -1 | a21 | 0 |
3 | 0 | -a31 | 0 |
4 | 1 | 0 | 1 |
Второе уравнение системы так же точно идентифицируемо: H = 2 и D = 1 т. е. счетное правило выполнено: D + 1 = H, выполнено достаточное условие идентификации: ранг матрицы 3 и detA = -b34
Уравнение | y1 | y4 | x2 |
1 | _1 | b14 | 0 |
3 | 0 | b34 | 0 |
4 | 1 | -1 | 1 |
Третье уравнение системы также идентифицируемо: H = 2, 0=1, D+ 1 = Н и detA=O, а ранг матрицы А = 3 и detA= 1.
Уравнение | y1 | y2 | x2 |
1 | -1 | 0 | 0 |
2 | 0 | -1 | 0 |
4 | 1 | 1 | 1 |
Идентификация уравнений достаточно сложна и не ограничивается только вышеизложенным. На структурные коэффициенты модели могут накладываться и другие ограничения, например, в производственной функции сумма эластичностей может быть равна по предположению 1. Могут накладываться ограничения на дисперсии и ковариации остаточных величин.
4.ОЦЕНИВАНИЕ ПАРАМЕТРОВ СТРУКТУРНОЙ
МОДЕЛИ
Коэффициенты структурной модели могут быть оценены разными способами в зависимости от вида системы одновременных уравнений. Наибольшее распространение в литературе получили следующие методы оценивания коэффициентов структурной модели:
• косвенный метод наименьших квадратов (КМНК);
• двухшаговый метод наименьших квадратов (ДМНК);
• трехшаговый метод наименьших квадратов (ТМНК);
• метод максимального правдоподобия с полной информацией (ММП7);
• метод максимального правдоподобия при ограниченной
информации (ММП5).
Косвенный и двухшаговый методы наименьших квадратов подробно описаны в литературе и рассматриваются как традиционные методы оценки коэффициентов структурной модели. Эти методы достаточно легкореализуемы. Косвенный метод наименьших квадратов применяется для идентифицируемой системы одновременных уравнений, а двухшаговый метод наименьших квадратов — для оценки коэффициентов сверхидентифици-руемой модели. Перечисленные методы оценивания также используются для сверхидентифицируемых систем уравнений