Смекни!
smekni.com

Коротаев А. В. Содержание введение 5 Вопросы, предложенные к обсуждению 9 (стр. 10 из 64)

Важно также отметить, что в последнее десятилетие произошло окончательное формирование новой научной области: когнитивной науки (Luger 1994), что ознаменовало начало последней, четвертой волны современной научно-технической революции. Когнитивная наука или когнитология («наука о разуме») объединяет в себе достижения когнитивной психологии, психофизики, исследований в сфере искусственного интеллекта, нейробиологии, нейрофизиологии, лингвистики, математической логики, неврологии, философии, и других наук.

Ключевым техническим достижением, сделавшим когнитологию возможной, стали новые методы сканирования мозга. Томография и другие методы впервые позволили заглянуть внутрь мозга и получить прямые, а не косвенные данные о его работе.[‡‡‡‡‡‡‡] Важную роль здесь сыграли и все более мощные компьютеры (HPC Wire 2007).

Изучение деятельности мозга шло не только на уровне всей системы, но и отдельных элементов. Стало возможным подробно изучить функции нейромедиаторов и их распространение в мозгу, а также работу отдельных нейронов и их частей (Siegel et al. 1999).

Информационные технологии также используются для моделирования биологических систем. Возникла новая междисциплинарная область вычислительная биология, включающая биоинформатику, системную биологию и др. (Pevzner 2000). Появился даже новый тип биологических/медицинских экспериментов in silico (в компьютерной симуляции) в дополнение к давно известным in vivo и in vitro[§§§§§§§]. К настоящему моменту создано множество самых разнообразных моделей, симулирующих системы от молекулярных взаимодействий до популяций. Объединением подобных симуляций различных уровней занимается, в частности, системная биология. Ряд проектов[********] самого разного рода занимается интеграцией моделей организма человека на различных уровнях (от клеток до целого организма).

Важным параметром моделирования являются глубина проработки модели и ее точность. В настоящее время модели крупных биологических систем описывают их приближенно. В то же время, теоретически и практически возможна реализация полного моделирования с точностью вплоть до атомарной. На данный момент, как мы уже сказали (см. выше), продемонстрированы модели вирусов (в том числе, созданные с помощью сканирующей микроскопии), содержащие несколько миллионов атомов и модели внутриклеточных структур (рибосомы и др.) схожей сложности (Sanbonmatsu, Simpson, Chang-Shung 2005: 15854—15859).

Для увеличения масштабов моделирования требуется дальнейший рост вычислительной мощности компьютеров. По мере его увеличения, станет возможным детальное и точное моделирование бактерий, целых клеток человеческого организма, а в перспективе даже мозга человека и всего организма. Уже начаты международные научные проекты, ставящие перед собой именно такие цели. Проект International E. coli Alliance работает над моделированием бактерии кишечной палочки (Science 2002). Проект Blue Brain (совместный проект IBM и Ecole Polytechnique Federale de Lausanne) создан для работы над моделированием коры головного мозга человека (Blue Brain Project 2007).

Важнейшей задачей для понимания принципов работы живых систем является изучение работы белков. Проблема осложняется крайней сложностью процесса сворачивания белков в процессе синтеза. Требуется значительная точность при моделировании, которая возможна только при высоких вычислительных мощностях. В настоящее время для этого обычно используются суперкомпьютеры или системы распределенных вычислений, такие как созданная в Стэнфордском Университете Folding@Home, объединяющая почти 2 миллиона компьютеров. По мере роста вычислительной мощности и развития параллелизации компьютеров наши возможности по симуляции биологических систем будут также расти. В будущем станет возможным полное моделирование живых организмов, от генетического кода до строения организма, его роста и развития, вплоть до эволюции популяции.

Успешное моделирование сложных организмов на молекулярном, клеточном и системном уровнях сделает возможным разработку и тестирование лекарств на компьютерных моделях, изучение всей совокупности процессов обмена веществ, создание искусственных организмов с нуля, разработку высокоэффективных лекарств от большинства болезней и старения.

Не только компьютерные технологии оказывают большое влияние на развитие биотехнологий. Наблюдается и обратный процесс, например, в разработке так называемых ДНК-компьютеров (Jonoska, Karl, Saito 1998). Одним из интереснейших направлений информатики является теория клеточных автоматов. На сегодняшний день параллели между клеточными автоматами и ДНК неплохо изучены (Sirakoulis et al. 2003). Есть и первые практические результаты. Была продемонстрирована практическая возможность вычислений на так называемых ДНК-компьютерах (Letters, Macdonald et al. 2006). Уже сама по себе возможность химических вычислений весьма интересна, но, кроме этого, оказалось, что ДНК-компьютеры обладают высоким параллелизмом и могут решать ряд задач не менее эффективно, чем традиционные электронные компьютеры сегодня. В ближайшее время они могут быть использованы в качестве интерфейсов на стыке между электронными и биологическими устройствами, однако в будущем, вероятно, уступят более мощным наномеханическим и квантовым компьютерам.

Стоит также отметить, что любой живой организм имеет определенные характеристики, свойственные кибернетическим устройствам. Например, развитие организма во время роста имеет целый ряд параллелей с такими математическими конструкциями как те же клеточные автоматы. Некоторые исследователи, занимающиеся изучением закономерностей строения живых систем, такие как Стивен Вольфрам, даже говорят об их изначальной математичности (Wolfram 2002).

Взаимодействие между самой первой по времени возникновения и последней волнами НТР (компьютерной и когнитивной) является, возможно, в перспективе наиболее важной «точкой научно-технологического роста».

Во-первых, как уже было сказано, информационные технологии сделали возможным существенно более качественное, чем раньше, изучение мозга. Все существующие технологии сканирования мозга требуют мощных компьютеров и специализированных компьютерных алгоритмов для реконструкции трехмерной картины происходящих в мозгу процессов из множества отдельных двумерных снимков и других процессов.

Во-вторых, развитие компьютеров делает возможной (и, как мы уже видели, на этом пути есть определенные успехи) симуляцию мозга. Так, удалось создать компьютерные модели отдельных нейронов (Oja 1982). Затем — были созданы более сложные модели отдельных систем. Была продемонстрирована принципиальная возможность воссоздания в компьютерной модели с точностью 95% процесса функционирования части гиппокампа крысы (Graham-Rowe 2003). Чип, реализующий эти функции, созданный специально для целей эксперимента, в принципе, может быть имплантирован в мозг, заменяя его часть. Сейчас идет работа (проект Blue Brain) над созданием полных компьютерных моделей отдельных неокортексных колонок, являющихся базовым строительным элементом новой коры головного мозга — неокортекса (Markram 2006: 153—160). В перспективе (по оценкам экспертов, к 2030—2040 годам (Kurzweil 2005)) возможно создание полных компьютерных симуляций человеческого мозга, что означает симуляцию разума, личности, сознания и других свойств человеческой психики (перенос человеческого разума на компьютерный носитель называется «загрузка» или «аплоадинг»). Интересно, что, по мнению специалистов, еще до появления возможности полной симуляции человеческого мозга будут созданы (поскольку они не требуют столь высоких вычислительных мощностей) и станут широко распространены технологии виртуальной реальности, то есть точной симуляции физического мира.

В-третьих, развитие «нейро-силиконовых» интерфейсов (объединения нервных клеток и электронных устройств в единую систему) открывает широкие возможности для киборгизации (подключения искусственных частей тела, органов и т. д. к человеку через нервную систему)[††††††††], разработки интерфейсов «мозг-компьютер» (прямое подключение компьютеров к мозгу, минуя обычные сенсорные каналы) для обеспечения высокоэффективной двусторонней связи. Замечательный эксперимент по разработке такого интерфейса был произведен исследовательской группой компании Cyberkinetics в 2004-м году. В результате эксперимента практически полностью парализованный человек смог управлять курсором на экране монитора, рисуя, переключая программы и пр. (Hochberg et al. 2006: 164—171). Работа над усовершенствованием подобных интерфейсов продолжается в Cyberkinetics и в других лабораториях.

В-четвертых, наблюдаемый сейчас стремительный прогресс в когнитивной науке в скором времени, как полагает ряд ученых, позволит «разгадать загадку разума», то есть описать и объяснить процессы в мозгу человека, ответственные за высшую нервную деятельность человека (Robinett 2004). Следующим шагом, вероятно, будет реализация данных принципов в системах универсального искусственного интеллекта. Универсальный искусственный интеллект (также называемый «сильный ИИ» и «ИИ человеческого уровня») будет обладать способностями к самостоятельному обучению, творчеству, работе с произвольными предметными областями и свободному общению с человеком. В трансгуманистической футурологии считается, что создание «сильного ИИ» станет одним из двух главных технологических достижений XXI века, наряду с молекулярными нанотехнологиями (Anissimov 2005).