Смекни!
smekni.com

на тему: «Вода. Структура и необычные свойства» (стр. 7 из 11)

В своих лабораториях человек сумел открыть еще, по крайней мере, шесть различных, не менее удивительных льдов. В природе их найти нельзя. Они могут существовать только при очень высоких давлениях. Обычный лед сохраняется до давления 208 МПа (мегапаскалей), но при этом давлении он плавится при –22°С. Если давление выше, чем 208 МПа, возникает плотный лед — лед-III. Он тяжелее воды и тонет в ней. При более низкой температуре и большем давлении — до 300 МПа — образуется еще более плотный лед-II. Давление сверх 500 МПа превращает лед в лед-V. Этот лед можно нагреть почти до 0°С, и он не растает, хотя и находится под огромным давлением. При давлении около 2 ГПа (гигапаскалей) возникает лед-VI. Это буквально горячий лед — он выдерживает, не плавясь, температуру 80°С. Лед-VII, найденный при давлении 3 ГПа, пожалуй, можно назвать раскаленным льдом. Это самый плотный и тугоплавкий из известных льдов. Он плавится только при 190°C.

Это совершенно необычайный лед. Мало того что на куске такого льда можно было бы с полным успехом жарить пищу, если бы только он существовал при обычном давлении, но этот лед-VII еще обладает необыкновенно высокой твердостью. Не следует думать, что он получается только лишь в установках высокого давления в лабораториях ученых, а больше его нигде и не встретишь. Этот лед может стать даже причиной внезапных катастроф. В подшипниках, в которых вращаются валы мощных турбин электростанций, развивается огромное давление. Если в смазку попадет хотя бы немного воды, она замерзнет, несмотря на то что температура подшипников очень высока. Образовавшиеся частицы льда-VII, обладающие огромной твердостью, начнут разрушать вал и подшипник и быстро выведут их из строя.

Некоторые ученые подозревают, что существует еще неустойчивый лед-IV, быстро переходящий в лед-V.

Может быть, лед и в космосе есть? Как будто бы есть, и при этом очень странный. Но открыли его ученые на Земле, хотя такой лед на нашей планете существовать не может. Плотность всех известных в настоящее время льдов даже при очень высоких давлениях, лишь очень немного превышает 1 г/см3. Плотность гексагональной и кубической модификации льда при очень низких давлениях и температурах, даже близких к абсолютному нулю, немного меньше единицы. Их плотность равна 0,94 г/см3.

Но оказалось, что в вакууме, при ничтожных давлениях и при температурах ниже –170°С, при , условиях, когда образование льда происходит при его конденсации из пара на охлаждаемой твердой поверхности, возникает совершенно удивительный лед. Его плотность... 2,3 г/см3. Все известные до сих пор льды кристаллические, а этот новый лед, по-видимому, аморфный, он характеризуется беспорядочным относительным расположением отдельных молекул воды; определенная кристаллическая структура у него отсутствует. По этой причине его иногда называют стеклянным льдом. Ученые уверены, что этот удивительный лед должен возникать в космических условиях и играть большую роль в физике планет и комет. Открытие такого сверхплотного льда было для физиков неожиданным.

А еще какие-нибудь льды существуют? Такой вопрос и задавать не следовало бы. Конечно существуют. Ученые хорошо изучили свойства льда, образующегося при замерзании тяжелой воды. Это совсем особый лед. Он плавится не при нуле градусов, а на 3,18° выше нуля. По всем своим свойствам тяжеловодный лед хоть немного да отличается от природного льда. Можно лед приготовить из легкой воды, можно — из нулевой воды, можно — из тяжелокислородной воды. Уж если быть очень строгим в формулировках, то следует признать, что любой из возможных различных «вод» соответствует свой собственный лед, и в нескольких формах. И конечно, все эти льды разные.

Но может быть, где-нибудь в природе есть еще какие-нибудь льды? Пока нет. Но наверное, человек, расширяя свое познание природы, сумеет в будущем найти еще не один новый вид льда, И никто не может сказать, какое это будет иметь значение.

Но если больше никаких льдов нет, то какой же лед замерзает летом в газопроводах? Удивительный и причиняющий много больших затруднений ученым, а еще больше инженерам и технологам.

Во влажном горючем газе при транспортировке его по трубопроводам от подземных скважин под давлением в десятки атмосфер даже летом, в теплую погоду, образуется лед на стенках стальных труб. Слой льда может нарасти настолько толстым, что перекроет трубу ледяной пробкой и прекратит подачу газа. Такую серьезную аварию ликвидировать бывает нелегко.

Этот странный лед возникает только в присутствии сжатого до большого давления горючего газа. Трудно только определить — лед это или не лед. Очень много труда пришлось затратить исследователям, пока удалось выяснить его природу.

Его кристаллическая решетка построена почти так же, как и у обычного льда, — она образована молекулами воды с помощью водородных связей.

Как и у обычного льда, в ней имеются пустые полости определенного объема. При образовании льда в среде сжатого газа происходит странное явление, открытое впервые сравнительно недавно, — в каждой такой свободной полости решетки льда оказывается заключенной молекула метана. Эта пойманная в клетку молекула газа не связана химически с молекулами воды, образующими кристаллическую ячейку льда. Просто она захвачена. Такой лед содержит много метана.

Газовые молекулы, включенные в решетку льда, все-таки влияют на его свойства. Они повышают устойчивость решетки, и поэтому такой лед плавится при более высокой температуре.

Такие соединения, хотя они и существуют, и имеют теперь довольно большое значение, и являются весьма многочисленными, не могут быть причислены к химическим соединениям. Химические связи в их образовании участия не принимают. Они получили название клатратов. Наверное, их можно назвать механическими соединениями.

В трубах, по которым транспортируется газ, и образуется клатратный лед. Пожалуй, это всё-таки не лед.

Что нужно, чтобы лед растаял? Очень много тепла. Гораздо больше, чем для плавления такого же количества любого другого вещества. Исключительно большая удельная теплота плавления 80 кал (335 Дж) на грамм льда — также аномальное свойство воды. При замерзании воды такое же количество тепла снова выделяется.

Когда наступает зима, образуется лед, выпадает снег и вода отдает обратно тепло, подогревает землю и воздух. Они противостоят холоду и смягчают переход к суровой зиме. Благодаря этому замечательному свойству воды на нашей планете существует осень и весна.

Все ли уже про лед известно? Что за вопрос? Конечно нет. Ни о чем нельзя в науке сказать: да, это уже полностью изучено, ничего не известного не осталось. Тем более, если вопрос относится к самому удивительному минералу на нашей планете — к твердой воде.

Казалось бы, что может быть изучено более подробно, чем самый обыкновенный лед, но это давно знакомое вещество до сих пор полно тайн и загадок.

Лед обладает таинственной кристаллической структурой. Его строение и прочность определяются прочностью водородных связей между отдельными молекулами воды. Водородная связь играет огромную роль в строении молекул биополимеров в тканях всех живых организмов. Это, быть может, имеет большое значение для жизни, так как следы структуры льда, по-видимому, долго сохраняются в талой воде. Эта область только еще начинает изучаться наукой.

В последние годы начинает развиваться новая важная область знания — физика льда. Лед — прочный, дешевый и хороший строительный материал. Из него строят жилища, склады, он создает природные надежные дороги, переправы, взлетно-посадочные площадки. Лед — причина стихийных бедствий. Он разрушает плотины, сносит мосты, сковывает грунт, вызывает обледенение самолетов и кораблей. Стало совершенно необходимым изучить все свойства льда, определить его механические, электрические, акустические, электромагнитные, радиационные характеристики.

При этом было открыто много неожиданного, о чем раньше и предполагать было нельзя. Например, лед оказался полупроводником, причем его проводимость протонного типа. Установлено, что при замерзании воды на границе между льдом и водой возникает разность электрических потенциалов, достигающая десятков вольт.

Обнаружена подвижность молекул в кристаллической решетке льда: они могут не только вращаться, но и перемещаться скачкообразно на сравнительно большие (в молекулярном масштабе) расстояния.

Много удивительного установлено при изучении процессов образования и поведения льдов в природе. Полярные льды в напряженном состоянии «кричат». Когда начинается деформация льда, то, как описывает Ф. Нансен, возникает легкий треск и стон, усиливаясь, он переходит через все виды тонов — лед то плачет, то стонет, то грохочет, то ревет, постепенно возрастая, его «голос» становится подобным звучанию всех труб органа.

Перед разрушением, при критических напряжениях, лед звенит, вздыхает, ухает.

Установлена зависимость между характером звучания льда и температурой воздуха. Этот важный раздел физики льда изучен еще далеко не достаточно.

Еще больше загадок скрывается в исследованиях энергетики процессов образования льдов в природе. Гигантское количество тепла, освобождающееся при замерзании воды, задерживает наступление зимних холодов. Тепло, поглощаемое при таянии льдов, замедляет приход весны. С изменением массы льда на планете связаны изменения климата на Земле. Но точный расчет зависимости между погодой и колоссальной энергоемкостью этих глобальных процессов пока еще невозможен — слишком много в них неизвестного.

Есть, например, и такие загадки. В старых записях сохранились предания о том, что иногда ледяные поля приобретают способность долго светиться в темноте, испуская слабый свет после того, как были освещены солнцем. Интересно было бы знать, верно ли это, когда и почему это явление происходит, чем объясняется. Есть наблюдения, что иногда светится и снег, если его при нескольких градусах мороза внести в темную комнату после освещения ярким солнцем. Рассказывают, что первые градины тоже светятся - они будто бы обладают электролюминесценцией. Интересно было бы и это проверить и объяснить.