Смекни!
smekni.com

«Применение ит в молекулярной генетике» (стр. 1 из 5)

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Выпускная работа по
«Основам информационных технологий»

Магистрант кафедры генетики

Чернова Александра Игоревна

Руководители:

профессор Титок Марина Алексеевна,

ассистент Шешко Сергей Михайлович

Минск – 2008 г.

Оглавление

1. Список обозначений ко всей выпускной работе…………………………….3

2. Реферат на тему «Применение ИТ в молекулярной генетике»………...…..4

2.1. Введение………………………………………………………………...…4

2.2. Глава 1 (способы применения IT в молекулярной генетике.)……...…..8

2.2.1. Применение IT для поиска необходимой информации………..…8

2.2.2. Применение IT для проведения молекулярно-генетических исследований…………………………………………………………14

2.3. Глава 2 (Применение IT в исследованиях по подготовке магистерской диссертации)………………………………………………………..…….19

2.4. Глава 3 (Заключение)……………………………………………….…..20

3. Список литературы к реферату……………………………………………...21

4. Интернет ресурсы в предметной области исследования..……………..…..23

5. Действующий личный сайт в WWW (гиперссылка)………………..……..24

6. Граф научных интересов………………………………………………..…...25

7. Презентация магистерской (кандидатской) диссертации…………..…..…26

8. Список литературы к выпускной работе…………………………………...27

1 Список обозначений ко всей выпускной работе

IT, ИТ – информационные технологии

2 Реферат на тему «Применение ИТ в молекулярной генетике»

2.1 Введение

Молекулярная генетика, раздел генетики и молекулярной биологии ставящий целью познание материальных основ наследственности и изменчивости живых существ путём исследования протекающих на субклеточном, молекулярном уровне процессов передачи, реализации и изменения генетической информации, а также способа её хранения.
Молекулярная генетика выделилась в самостоятельное направление в 40-х гг. 20 в. в связи с внедрением в биологию новых физических и химических методов (рентгеноструктурный анализ, хроматография, электрофорез, высокоскоростное центрифугирование, электронная микроскопия, использование радиоактивных изотопов и т. д.), что позволило гораздо глубже и точнее, чем раньше, изучать строение и функции отдельных компонентов клетки и всю клетку как единую систему. За свою недолгую историю молекулярная генетика достигла значительных успехов, углубив и расширив представления о природе наследственности и изменчивости, и превратилась в ведущее и наиболее быстро развивающееся направление генетики. Молекулярная генетика изучает молекулярные основы генетических процессов как у низших, так и у высших организмов и не включает частной генетики прокариот, занимающей видное место в генетике микроорганизмов.

Любую из современных наук сегодня нельзя представить без применения информационных технологий. Молекулярная генетика не стала исключением. С новыми методами в биологию пришли новые идеи физики и химии, математики и кибернетики. Современная биология стала производителем беспрецедентно огромных объемов экспериментальных данных, осмысливание которых невозможно без привлечения современных информационных технологий и эффективных математических методов анализа данных и моделирования биологических систем и процессов.

Прогресс человечества в 21 веке будет неразрывно связан с развитием и взаимодействием молекулярной биологии, генетики и информатики. Ответы на многие глобальные вызовы, стоящие перед современной цивилизацией, критическим образом зависят от развития этих наук, их взаимодействия и использования их достижений.

В ответ на эту острую потребность возникает новая наука - информационная биология. Объектами исследований информационной биологии являются генетические макромолекулы - ДНК, РНК, белки, фундаментальные генетические процессы - репликация, транскрипция, трансляция, генетические сети, функционирование которых обеспечивает выполнение всех функций организмов.

Генные сети

Суммарные объемы первичных экспериментальных данных только по молекулярно-генетическому уровню организации жизни превышают сотни терробайт. В результате автоматической расшифровки нуклеотидных последовательностей в молекулярной биологии и генетике за последние 20 лет произошел информационный взрыв. Объемы получаемых данных поражают воображение.

2.1.1 Автоматическая расшифровка нуклеотидных последовательностей

2.1.2 Характеристика генома человека

Например, длина генома человека составляет более 6 миллиардов пар оснований и он содержит более 30 тысяч генов. При его расшифровке получены данные объемом десятки терробайт о физических и цитогенетических картах хромосом, их нуклеотидных последовательностях, локализации генов, мутациях: выявлено не менее 1.5 миллиона мутаций, по которым геномы людей отличаются друг от друга.

2.1.3

2.1.4 Экспериментальные данные


Расшифрованы структуры геномной ДНК тысяч вирусов, десятков бактерий, геномы дрожжей, дрозофилы, ряда животных и растений.
Расшифрованы аминокислотные последовательности миллионов белков и более 15 тысяч пространственных структур белков. Технология ДНК-чипов позволяет количественно измерять экспрессию десятков тысяч генов одновременно в отдельной клетке. Разворачиваются исследования по протеомике, направленные на расшифровку первичной и пространственной структур всех белков человека и бактерий (миллионы молекул). Огромные экспериментальные данные накапливаются при изучении разнообразия геномов человека и животных.

В связи с актуальностью данной темы, целью настоящей работы явилось показать способы применения достижений информационных технологий при исследовании в области молекулярной генетики.

2.2 Глава 1 (способы применения IT в молекулярной генетике.).

В связи со спецификой молекулярной генетики как отрасли генетических знаний способы применения достижений информационных технологий различны. Условно их можно разделить на две группы. К первой относится использование различного рода специальных поисковых систем (PubMed, NCBI и др.) Ко второй группе принадлежат прикладные программы, которыми пользуется исследователь при своих экспериментах (BLAST, OligoCalc, и др.)

2.2.1 Применение IT для поиска необходимой информации.

Для поиска нужной информации о той или иной нуклеотидной последовательности, организме-объекте или научной статьи по заданной тематике, автору возможно использование различных поисковых систем. Самым простейшим методом является поиск информации через Google. Принцип работы данной системы достаточно известен, поэтому не буду подробно на нем останавливаться. Для поиска более подробной информации существует ряд специальных поисковых систем и баз данных. Перечислю некоторые из них:

· MedHunt(http://www.hon.ch/MedHunt). MedHunt использует людей и поисковые технологии, чтобы формировать свою индексную базу. Поиск может быть ограничен регионом. Также доступен французский интерфейс.

· Biocrawler(http://www.biologie.de). Каталог и поисковый сервер для поиска информации по биологии.

· Medical World Search(http://www.mwsearch.com). Medical World Search разработан, чтобы улучшить доступ к медицинской информации профессиональным медикам и потребителям. Medical World Search сосредоточен на развитии интеллектуального поискового сервера используя недавние усовершенствования в медицинской информатике в отличие от программ, которые ориентируются на простом поиске слова.

· NCBI(http://www.ncbi.nlm.nih.gov/). Учреждённый в 1998 году ресурс по молекулярной биологии. NCBI создаёт базы данных, проводит исследования, разрабатывает программные средства, распространяет биомедицинскую информацию – всё для лучшего понимания процессов на молекулярном уровне, затрагивающих здоровье и болезни.

· Echidna Medical Search(http://www.drsref.com.au/search). Поиск медицинской информации на австралийских медицинских сайтах.

· Galenicom(http://www.galenicom.com). Поисковый сервер, осуществляющий поиск на испанских медицинских ресурсах.

· Medisearch(http://www.medisearch-int.com). Интернациональные медицинские ресурсы.

· MedNets(http://www.mednets.com)MedNets – каталог ресурсов медицинской тематики. Содержит более 20000 ссылок на лучшие медицинские ресурсы.

Наиболее часто используемым способом поиска информации о научных статьях в области молекулярной биологии, генетики, микробиологии, медицине является сайт национальной медицинской библиотеки США – PubMed(www.pubmed.gov). Для удобства тематического поиска и анализа биомедицинской информации, все журнальные статьи в Index Medicus и Medline проиндексированы по определенным ключевым словам или терминам, которые включены в специальный словарь под названием “Medical Subject Headings” (MESH). Использование такого подхода обеспечивает однообразие и преемственность в иерархической структуризации биомедицинской литературы. Термины MESH и древовидная структура их взаимоотношений пересматриваются ежегодно.

Поиск информации в Pubmed достаточно прост, но для более эффективной работы необходимо знать некоторые особенности его организации и принципы функционирования. Домашняя страница сайта www.pubmed.gov содержит, прежде всего, поле для выражения запроса, которое находится в верхней части экрана. Сразу под ним находится строка со ссылками на дополнительные настройки и инструменты, позволяющие улучшить стратегию поиска. Слева находится боковая колонка со ссылками на помощь по поиску, самоучитель и различные службы PubMed. В поле запроса можно ввести любую комбинацию нужных терминов. Для выполнения самого поиска следует кликнуть указателем мыши на кнопку “GO”.