Смекни!
smekni.com

1. История становления синергетики как науки (стр. 3 из 5)

.Важным понятием теории самоорганизации (синергетики) является критическая размерность пространства, в котором существует рассматриваемая система. Эта критическая размерность устанавливается исходя из условия близости двух величин: времени выравнивания неоднородностей системы за счет диффузии (это время зависит от размерности пространства, а именно, диффузия замедляется по мере уменьшения размерности пространства) и времени протекания химических процессов, которые вблизи точки бифуркации замедляются, но в силу локального характера процесса это замедление не зависит от размерности системы. При размерности системы, равной или большей критической, когерентность возможна. В противном случае диффузия оказывается не способной коррелировать различные пространственные ячейки системы, и бифуркация не состоится. Конкретная структура системы слабо влияет на критическую размерность. В основном критическую размерность определяет степень доминирующей в данной системе нелинейности и тому подобные, казалось бы, формальные особенности математической модели. Именно поэтому можно дать универсальную классификацию совершенно различных систем, например, химической, биологической и социологической, основываясь на качественно аналогичных особенностях поведения.

*Наконец, еще одно замечание по поводу когерентности нужно сделать в связи с терминологией. Первоначально это свойство нелинейных систем, далеких от равновесия, было обнаружено в термодинамике и получило название дальнодействующих корреляций, но позже в физике появился другой термин—когерентность, который стал вытеснять первый. Синергетика—междисциплинарная наука, и поэтому некоторый разнобой в терминах существует, но с течением времени он уменьшается.

Равновесному состоянию термодинамической системы соответствует тепловой хаос, в котором частицы системы ведут себя независимо друг от друга. Такой хаос совершенно бесплоден. Источником порядка является неравновесность. Она порождает порядок из так называемого детерминированного хаоса, где частицы ведут себя когерентно.

Чем дальше система уходит от равновесия, тем больше колебательных частот появляется в системе. Взаимодействие колебаний с разными частотами способствует возникновению больших флуктуаций. Область на бифуркационной диаграмме, определяемая значениями параметров, при которых возможны сильные флуктуации, обычно принято называть хаотической. Но это не простой хаос. В нем содержатся те аттракторы, на один из которых система выйдет, образовав диссипативную структуру. Такой хаос чреват порядком, он-то и называется детерминированным хаосом, в отличие от теплового хаоса, который соответствует равновесным состояниям, определяемым в термодинамике принципом максимума энтропии.

Для процессов самоорганизации важнейшим состоянием систем является хаотическая динамика. Связанная с разупорядоченностью неустойчивость движения позволяет системе непрерывно прощупывать собственное пространство состояний, выбирая некоторые состояния, создавая тем самым информацию и сложность. Являясь результатом какого-то конкретного механизма, эти состояния выбираются со стопроцентной вероятностью, поэтому проблема выбора конкретной последовательности из очень большого числа априорно равновероятных последовательностей попросту не возникает. Динамическая система в хаотическом состоянии—это своего рода сепаратор, отбрасывающий огромное большинство случайных последовательностей и сохраняющий лишь те из них, которые совместимы с динамическими законами данной системы.

Понятие детерминированного хаоса позволяет проиллюстрировать особую важность управляющих параметров. Обычно в философской литературе, так же как и в естественнонаучной, детерминированный хаос рассматривается исключительно как творческое начало. Делается вывод о том, что хаос в общественном развитии необходим для построения лучшего будущего.

Однако детерминированный хаос в точке бифуркации может вести не только к прогрессу, но и к деградации. Все зависит от выбора управляющих параметров, которые задают фазовый портрет. При соответствующем выборе управляющих параметров в фазовом портрете появляются аттракторы самоуничтожения, о чем свидетельствуют массовые самоубийства животных, например, китов. Да и резкий рост самоубийств в такие периоды, как, например, реформы в России, подтверждает этот вывод.

Человек и общество являются самыми сложными из эволюционирующих систем. Обладая интеллектом, они могут делать сознательный выбор постбифуркационного состояния . Ошибка в выборе (случайная или навязанная исподволь со стороны) тоже ведет к деградации и самоуничтожению. Система может прогрессивно развиваться только в том случае, если флуктуации «прощупывают» все без исключения возможности системы и выбирают наилучшую из них. Если же это «прощупывание» не доведено до конца и прервано чьей-то волей, объявившей некую цель единственно верной, то это уже не самоорганизация, а то, что политики называют тоталитаризмом.

В связи с этой темой всплывает еще одна не менее важная. Тип диссипативной структуры в значительной степени зависит от условий ее образования. Например, существенную роль в отборе механизма самоорганизации могут играть внешние поля, в частности, гравитационное или магнитное поля Земли для ряда физических и биологических систем. В сильно неравновесных условиях системы начинают «воспринимать» внешние поля, в результате чего появляется возможность отбора тех конфигураций системы, которые учитывают внешнее воздействие. Человеческое общество каждой страны, будучи открытой системой, испытывает влияние внешней среды, в частности, других обществ, что и есть «внешнее воздействие», являющееся одним из управляющих параметров.

Очень сложные нелинейные системы, такие как человек или общество, могут находиться в состояниях, напоминающих хаотические, но таковыми не являющихся. Есть системы с так называемыми странными аттракторами. Изображение странного аттрактора в фазовом пространстве—не точка и не предельный цикл, как у устойчивых структур, а некоторая область, по которой блуждают параметры системы. Эти системы не являются полностью неустойчивыми, потому что для них возможны не любые состояния, а лишь те, которые находятся внутри ограниченной области фазового пространства, т.е. изменения системы ограничены строго определенными рамками. Механизмы возникновения странных аттракторов до сих пор не удалось выяснить настолько, чтобы понимать роль отдельных параметров системы в появлении странных аттракторов. Существуют лишь некоторые качественные модели хаотического поведения.

Одним из удивительных свойств эволюционирующих систем является постоянный рост темпов эволюции. Эволюция мира есть не просто создание все усложняющихся структур, но и изменение темпов эволюции. Восходя по ступеням сложности от неживого к живому и от живого к человеку, процессы все более плотно «упаковываются», свертываются, их ход ускоряется. Интервалы между бифуркациями сокращаются, и это наглядно видно на примере развития человеческого общества.

До сих пор рассматривались те основы синергетики, которые характерны для эволюционирующих систем, обменивающихся со средой энергией и массой. При обмене информацией все сказанное сохраняется, но появляются некоторые дополнительные особенности.

Рецепция информации процесс неравновесный, поскольку рецепция информации означает возникновение определенной упорядоченности в воспринимающей системе, следовательно, этот процесс далек от равновесия. Другими словами, рецепторная система—диссипативная, переходящая под влиянием информационного потока в состояние, соответствующее диссипативной структуре.

В эволюции человечества начало каждого события—это создание новой информации, а значит, шаг в развитии; далее следует адаптация—этап повышения ценности информации, сопровождающийся потерей ее новизны и увеличением сложности, уходом от равновесия к бифуркации, что приводит к обострению чувствительности систем к внутренним и внешним флуктуациям, разрушающим организацию системы, переводящим ее в хаотическое состояние. Затем снова выход из хаоса из-за нового события-информации, запоминаемого системой.

Генерация ценной информации возможна, когда в динамической системе есть так называемый перемешивающий слой. Его особенность по сравнению со странным аттрактором состоит в том, что фазовые траектории как входят, так и выходят из него. Динамический слой обязательно должен быть в информационной системе, так как он обеспечивает возникновение новой информации, которое происходит случайно, независимо от начальных условий системы.

Согласно одной из синергетической моделей, перемешивающий слой возникает в информационной системе в процессе эволюции последней, в ходе которой элементы системы могут перемещаться, т.е. диффундировать. Если исходное состояние системы хаотическое, то на первом этапе образования динамического слоя в системе зарождаются отдельные фрагменты перемешивающего слоя, затем они расширяются, образуя границы друг с другом и заполняя всю систему, число областей начинает уменьшаться за счет их укрупнения, при этом криволинейные границы между областями выпрямляются, и постепенно в процессе поглощения малых областей большими образуется перемешивающий слой.

Одна из целей науки—это прогнозирование развития событий. В значительной мере эта цель заявлена и утверждена наукой прошлых эпох. Со времен Лапласа считалось, что будет достигнута такая степень развития науки, начиная с которой можно будет предсказывать будущее. В этой связи представляет интерес уникальное в истории науки публичное извинение президента Международного союза чистой и прикладной математики сэра Джона Лайтхилла, сделанное им от имени своих коллег, за то, «что в течение трех веков образованная публика вводилась в заблуждение апологией детерминизма, основанного на системе Ньютона, тогда как можно считать доказанным, по крайней мере, с 1960 года, что этот детерминизм является ошибочной позицией».