Смекни!
smekni.com

Мусский Сергей Анатольевич (стр. 24 из 114)

В микросхемах «запаяны» программы, которые выполняются при включении компьютера и как бы оживляют его, превращая множество соединенных проводками деталей в единое целое — в готовый к работе универсальный преобразователь информации.

Технология микропроцессоров уже приближается к фундаментальным ограничениям. Закон-прогноз Гордона Мура гласит, что плотность транзисторов в микросхеме удваивается каждые полтора года. Как ни удивительно, все последние двадцать лет он выполнялся. Однако, следуя этому закону, к 2010–2020 годам размеры транзистора должны уменьшиться до четырех-пяти атомов. Рассматриваются многие альтернативы.

К технологиям, способным экспоненциально увеличивать обрабатывающую мощность компьютеров, следует отнести молекулярные или атомные технологии; ДНК и другие биологические материалы; трехмерные технологии; технологии, основанные на фотонах вместо электронов, и, наконец, квантовые технологии, в которых используются элементарные частицы.

В XXI веке вычислительная техника сольется не только со средствами связи и машиностроением, но и с биологическими процессами, что откроет такие возможности, как создание искусственных имплантантов, интеллектуальных тканей, разумных машин, «живых» компьютеров и человеко-машинных гибридов.

Сегодня одно из перспективнейших направлений в микроэлектронике — нейрокомпьютеры. Их устройство, или архитектура, иная, чем у обычных вычислительных машин. Микросхемы близки по строению нейронным сетям человеческого мозга. Именно отсюда пошло и название.

Отсюда и особенности нейрокомпьютера. Он способен к обучению, а значит, ему под силу справиться с задачами, которые обычному компьютеру не под силу. Его главный козырь — решение задач без четкого алгоритма или с огромными потоками информации. Поэтому уже сегодня нейрокомпьютеры применяются на финансовых биржах, где помогают предсказывать колебания курса валют и акций. Понятно, что не остались в стороне и военные. Нейрокомпьютеры, распознавая образы, корректируют полет ракет по заданному маршруту.

При всем этом нейрокомпьютеры еще не слишком заметны на рынке компьютерной техники. Однако, по оценкам многих специалистов, а среди них и самый авторитетный — Билл Гейтс, уже через десять лет их доля вырастет до девяноста процентов.

Приятно, что одним из первых совершил прорыв в будущее российский НТЦ «Модуль», выйдя с разработанным им процессором на мировой рынок. Сегодня его приобретают законодатели компьютерной моды.

По сравнению с созданным россиянами нейропроцессором NM-6403 самые быстродействующие на сегодня системы, конкуренты «Интел» и «Тексас инструментс» отстали значительно. Их машины считают в десятки раз медленнее, зато стоят в десятки раз дороже. В чем же секрет российского центра?

«Причина — в принципиально новой архитектуре, — объяснил журналисту газеты «Известия» начальник сектора интегральных схем Дмитрий Фомин. — Скажем, если в обычном компьютере за один такт счета совершается не более 4 операций сложения, то в нашем — до 288. Кроме того, его "мозги" в каждый момент времени загружены полностью, не работают вхолостую, что происходит при традиционной архитектуре. В итоге один наш процессор может заменить сразу шесть американской фирмы "Тексас инструментс"».

К сожалению, в России не оказалось предприятия, способного изготовить столь сложную технику. Тогда «Модуль» разместил заказ в Южной Корее на «Самсунге». Но и эта известная фирма лишь с десятой попытки сумела удовлетворить требования россиян.

В результате сейчас впервые каждый желающий может купить серийную отечественную микроэлектронику, превосходящую мировой уровень. Процессор удостоен золотой медали на Всемирном салоне изобретений «Брюссель-Эврика». Один из лидеров компьютерного рынка, японская фирма «Фуджитцу» приобрела лицензию на производство процессора.

«Нас на рынке мало кто знает, — говорит директор «Модуля» Юрий Борисов. — Чтобы раскрутиться и продавать большие партии, нужны большие деньги. Их у нас нет, зато есть у "Фуджитцу". Мы будем получать доход с каждого изготовленного, подчеркиваю, а не проданного японцами изделия. Условия контракта очень выгодные. Этот процессор для нас — вчерашний день. Уже разработаны более совершенные варианты. Мы только приоткрыли дверь на мировой рынок сфере».

Суперкомпьютеры

В 1996 году куратор Музея вычислительной техники в Великобритании Дорон Свейд написал статью с сенсационным заглавием: «Российская серия суперкомпьютеров БЭСМ, разрабатывавшаяся более чем 40 лет тому назад, может свидетельствовать о лжи Соединенных Штатов, объявлявших технологическое превосходство в течение лет холодной войны».

Действительно, середина 1960-х годов была звездным часом в истории советской вычислительной техники. В СССР тогда работало множество творческих коллективов — институты С.А. Лебедева, И.С. Брука, В.М. Глушкова и т.д. Одновременно выпускалось множество различных типов машин, чаще всего несовместимых друг с другом, самого разнообразного назначения.

Созданная в 1965 году и выпущенная впервые в 1967 году БЭСМ-6 была оригинальным русским компьютером, спроектированным наравне со своим западным аналогом. Затем был знаменитый «Эльбрус», было развитие БЭСМ (Эльбрус-Б). В.М. Глушков создал замечательную Машину Инженерных Расчетов — «Мир-2» (прообраз персонального компьютера), не имеющую до сих пор западных аналогов.

Именно коллектив «Эльбруса» первым разработал суперскалярную архитектуру, построив основанную на ней машину «Эльбрус-1» на много лет раньше Запада. В этом коллективе на пару лет раньше, чем в фирме «Cray» — признанном лидере в производстве суперкомпьютеров, были реализованы идеи многопроцессорного компьютера.

Научный руководитель группы «Эльбрус», профессор, член-корреспондент РАН Борис Арташесович Бабаян считает, что наиболее существенное достижение группы — архитектура супермашины «Эльбрус-3». «Логическая скорость этой машины значительно выше, чем у всех существующих, то есть на том же оборудовании эта архитектура позволяет в несколько раз ускорить выполнение задачи. Аппаратную поддержку защищенного программирования мы реализовали впервые, на Западе ее еще даже и не пробовали. "Эльбрус-3" был построен в 1991 году. Он уже стоял у нас в институте готовый, мы начали его отладку. Западные фирмы столько говорили о возможности создания такой архитектуры… Технология была отвратительная, но архитектура была до того совершена, что эта машина была в два раза быстрее самой быстрой американской супермашины того времени Cray Y-MP».

Принципы защищенного программирования в настоящее время реализуются в концепции языка Java, а идеи, аналогичные идеям «Эльбруса», в настоящее время легли в основу разработанного фирмой «Intel» совместно с HP процессора нового поколения — Merced. «Если вы посмотрите Merced, это практически та же архитектура, что и в «Эльбрусе-3». Может быть, какие-то детали Merced отличаются, и не в лучшую сторону».

Итак, несмотря на всеобщую стагнацию, все еще можно было строить компьютеры и суперкомпьютеры. К сожалению, дальше с нашими компьютерами случилось то же самое, что служилось с российской промышленностью вообще. А ведь сегодня в число традиционных макроэкономических показателей (таких, как ВВП и золотовалютные запасы) настойчиво стремится попасть новый, экзотический на первый взгляд параметр — суммарная мощность компьютеров, которыми располагает страна. Наибольший удельный вес в этом показателе будут иметь суперкомпьютеры. Еще пятнадцать лет назад эти машины были уникальными монстрами, но теперь их производство поставлено на поток.

«Первоначально компьютер создавался для сложных вычислений, связанных с ядерными и ракетными исследованиями, — пишет в журнале «Компания» Аркадий Воловик. — Мало кто знает, что суперкомпьютеры помогли сохранить экологический баланс на планете: в годы "холодной войны" компьютеры моделировали изменения, происходящие в ядерных зарядах, и эти эксперименты позволили в итоге супердержавам отказаться от реальных испытаний атомного оружия. Так, мощный многопроцессорный компьютер Blue Pacific компании IBM используется именно для симуляции испытаний ядерного оружия. Успеху переговоров по прекращению ядерных испытаний на самом деле способствовали не дипломаты, а компьютерщики. «Compaq Computer Corp.» создает крупнейший в Европе суперкомпьютер на основе 2500 процессоров Alpha. Французская комиссия по ядерной энергии будет использовать суперкомпьютер, чтобы повысить безопасность французских арсеналов без проведения новых ядерных испытаний.

Не менее масштабные вычисления необходимы при проектировании авиационной техники. Моделирование параметров самолета требует огромных мощностей — например, для расчета поверхности самолета нужно вычислить параметры воздушного потока в каждой точке крыла и фюзеляжа, на каждом квадратном сантиметре. Иными словами, требуется решить уравнение для каждого квадратного сантиметра, а площадь поверхности самолета — десятки квадратных метров. При изменении геометрии поверхности все нужно пересчитывать заново. Причем эти расчеты должно быть сделаны быстро, иначе процесс проектирования затянется. Что касается космонавтики, то она началась не с полетов, а с расчетов. У суперкомпьютеров здесь огромное поле для применения».

В корпорации «Боинг» развернут суперкластер, разработанный компанией «Linux NetworX» и используемый для моделирования поведения топлива в ракете «Delta IV», которая предназначена для запуска спутников различного назначения. Из четырех взятых на рассмотрение кластерных архитектур «Боинг» выбрала кластер «Linux NetworX», поскольку он обеспечивает приемлемую стоимость эксплуатации, а по вычислительной мощности даже превосходит потребности проекта «Delta IV». Кластер состоит из 96 серверов, основанных на процессорах AMD Athlon 850 МГц, связанных между собой посредством высокоскоростных Ethernet-соединений.