Основные принципиальные особенности БЭСМ-6: магистральный, или, как в
1964 г. назвал его С.А. Лебедев, водопроводный принцип организации
управления; с его помощью потоки команд и операндов обрабатываются
параллельно (до восьми машинных команд на различных стадиях); использование
ассоциативной памяти на сверхбыстрых регистрах, что сократило количество
обращений к ферритной памяти, позволило осуществить локальную оптимизацию
вычислений в динамике счета; расслоение оперативной памяти на автономные
модули, что дало возможность одновременно обращаться к блокам памяти по
нескольким направлениям; многопрограммный режим работы для одновременного
решения нескольких задач с заданными приоритетами; аппаратный механизм
преобразования математического адреса в физический, что дало возможность
динамически распределять оперативную память в процессе вычислений
средствами операционной системы; принцип полистовой организации памяти и
разработанные на его основе механизмы защиты по числам и командам; развитая
система прерывания, необходимая для автоматического перехода с решения
одной задачи на другую, обращения к внешним устройствам, контроля их
работы. В электронных схемах БЭСМ-6 использовано 60 тыс. транзисторов и 180 тыс.
полупроводников-диодов.
III поколение (1964-1972 гг.)
В 1960 г. появились первые интегральные схемы (ИС), которые получили широкое распространение в связи с малыми размерами, но громадными возможностями. ИС - это кремниевый кристалл, площадь которого примерно 10 мм2. 1 ИС способна заменить десятки тысяч транзисторов. 1 кристалл выполняет такую же работу, как и 30-ти тонный “Эниак”. А компьютер с использованием ИС достигает производительности в 10 млн. операций в секунду.
В 1964 году, фирма IBM объявила о создании шести моделей семейства IBM 360 (System 360), ставших первыми компьютерами третьего поколения.
Машины третьего поколения — это семейства машин с единой архитектурой, т.е. программно совместимых. В качестве элементной базы в них используются интегральные схемы, которые также называются микросхемами.
Машины третьего поколения имеют развитые операционные системы. Они обладают возможностями мультипрограммирования, т.е. одновременного выполнения нескольких программ. Многие задачи управления памятью, устройствами и ресурсами стала брать на себя операционная система или же непосредственно сама машина.
Примеры машин третьего поколения — семейства IBM-360, IBM-370, ЕС ЭВМ (Единая система ЭВМ), СМ ЭВМ (Семейство малых ЭВМ) и др. Быстродействие машин внутри семейства изменяется от нескольких десятков тысяч до миллионов операций в секунду. Ёмкость оперативной памяти достигает нескольких сотен тысяч слов.
Наиболее быстродействующая ЭВМ ряда ЕС ЭВМ выпускалась заводом ВЭМ (г. Пенза). Она выполняла до 5 млн. опер/с.
В целях защиты от внешних воздействий интегральные схемы выпускают в
защитных корпусах. По количеству элементов различают интегральные схемы: 1-
й степени интеграции (до 10 элементов), 2-й степени интеграции (от 10 до
100) и т. д. Размеры отдельных элементов интегральных схем очень малы
(порядка 0,5-10 мкм) и подчас соизмеримы с размерами пылинок (1-100 мкм).
Поэтому производство интегральных схем осуществляется в особо чистых
условиях. Ко всем достоинствам ЭВМ третьего поколения добавилось еще и то, что их
производство оказалось дешевле, чем производство машин второго поколения.
Благодаря этому, многие организации смогли приобрести и освоить такие
машины. А это, в свою очередь, привело к росту спроса на универсальные ЭВМ,
предназначенные для решения самых различных задач. Большинство созданных до
этого ЭВМ являлись специализированными машинами, на которых можно было
решать задачи какого-то одного типа.
1968 год. Начало эры ЕС ЭВМ.
Пожалуй, историю советского компьютеростроения можно разделить на две эпохи — до и после начала выпуска ЕС ЭВМ. Слишком важную роль сыграло появление этих машин в развитии отечественной вычислительной техники. И совсем по-разному шло это развитие до и после 1968 года. Существует мнение, что решение о воспроизведении в ЕС-архитектурe машин IBM стало началом заката советского компьютеростроения, поворотом от творческого поиска к бездумному копированию.
К концу 60-х в нашей стране выпускались ЭВМ общего назначения (около 20 типов), а также специализированные машины преимущественно для оборонного ведомства. Машин было много, хороших и разных (вот именно разных) и каждая требовала специальных усилий по разработке собственного программного обеспечения. Да и этого «много» становилось недостаточно — и инженеры, и ученые, и хозяйственники, и чиновники, наконец, начали осознавать роль вычислительных машин и насущную необходимость в их разработке. Правительство планировало существенно расширить производство ЭВМ в стране. И тогда встал вопрос, — каких ЭВМ?
К тому времени появилась информация о новом этапе в разработке вычислительных машин, начатом компанией IBM. Выпускавшаяся с 1964 года серия S/360 положила начало третьему поколению ЭВМ. Эти машины представляли собой не отдельно взятые системы, а семейство программно-совместимых компьютеров, различающихся по производительности, но общих по архитектуре. Собственно, именно в эти годы и возникло понятие компьютерной архитектуры, которое символизировало весь комплекс аппаратных и программных средств ЭВМ. У машин одного семейства могут быть разные технические параметры и функциональные возможности устройств, но всегда общие системы команд, организация взаимосвязей между модулями и матобеспечением.
В конце 60-х в нашей стране столкнулись проблемой — как перейти от создания отдельных уникальных экземпляров к индустрии вычислительных машин, количество которых покроет потребность в ЭВМ не единичных научных институтов, а десятков тысяч промышленных предприятий и других организаций. В конце 1967 года на правительственном уровне принимается решение о создании семейства универсальных вычислительных машин (единой серии ЭВМ — ЕС ЭВМ). В качестве прототипа «РЯДа» (таково первоначальное название ЕС) была выбрана серия IBM S/360. И в 1968 году в Минске, где располагалось наиболее современное и технологичное производство универсальных ЭВМ, началась работа над первой машиной семейства.
Одним из главных аргументов в пользу американских машин была богатейшая библиотека программ, которую можно было использовать только в том случае, если имеются машины идентичной архитектуры. Так что оснащение множества организаций машинами, на которых сразу будет мощная библиотека прикладных программ, представлялось весьма заманчивой перспективой. А именно это должно было произойти с выпуском ЕС.
Хотя с 70-х прекратился выпуск «Минсков» и пензенских «Уралов», советские ученые довольно успешно продолжали исследования в данной области.
ЭВМ 4-го поколения.
IV поколение (с 1972 г. по настоящее время)
Четвёртое поколение — это теперешнее поколение компьютерной техники, разработанное после 1970 года.
Впервые стали применяться большие интегральные схемы (БИС), которые по мощности примерно соответствовали 1000 ИС. Это привело к снижению стоимости производства компьютеров. В 1980 г. центральный процессор небольшой ЭВМ оказалось возможным разместить на кристалле площадью 1/4 дюйма (0,635 см2.). БИСы применялись уже в таких компьютерах, как “Иллиак”, ”Эльбрус”, ”Макинтош”. Быстродействие таких машин составляет тысячи миллионов операций в секунду. Емкость ОЗУ возросла до 500 млн. двоичных разрядов. В таких машинах одновременно выполняются несколько команд над несколькими наборами операндов.
C точки зрения структуры машины этого поколения представляют собой многопроцессорные и многомашинные комплексы, работающие на общую память и общее поле внешних устройств. Ёмкость оперативной памяти порядка 1 - 64 Мбайт.
Распространение персональных компьютеров к концу 70-х годов привело к некоторому снижению спроса на большие ЭВМ и мини-ЭВМ. Это стало предметом серьезного беспокойства фирмы IBM (International Business Machines Corporation) — ведущей компании по производству больших ЭВМ, и в 1979 г. фирма IBM решила попробовать свои силы на рынке персональных компьютеров, создав первые персональные компьютеры- IBM PC.
Микропроцессоры и их применение.