Смекни!
smekni.com

Методика археологических исследований 9 Глава 3 10 Применение ит в процессе археологических исследований и при изучении пражской культуры 10 (стр. 2 из 5)

Глава 3

Применение ИТ в процессе археологических исследований и при изучении пражской культуры

3.1 Использование ИТ на основных этапах археологических исследований

В структуре массива информационных технологий, применяемых в археологических исследованиях можно условно выделить пять групп технологий, определяющих и регулирующих соответственно процессы создания, накопления, представления, обработки и передачи археологической информации [7].

Исходным понятием в этом ряду являются технологии создания (поиска) археологической информации. Они охватывают все этапы и стадии формирования первичных данных, сопровождающих процессы полевых и камеральных археологических исследований, включая работу с литературными источниками и описание находок. Наиболее важными критериями целесообразности подобных технологий является полнота, достоверность и адекватность формируемых в исследовательском процессе данных. Хотя использование этих технологий практически реализует традиционные формы и методы археологических исследований, однако важное значение при этом придаётся форме, в которой фиксируется археологическое знание. Здесь в первую очередь ставится задача обеспечить возможность использования современных компьютерных методов и средств. Важнейшей процедурой в такого рода технологиях являются модели данных, регулирующих не только форму представления фиксируемых (вводимых) данных (тексты, рисунки, снимки, чертежи, таблицы и т.д.), но и те материальные (бумага, киноплёнка, аудио и видеокассеты, компьютерные средства) и логические (макеты данных) носители, на которых эти данные предусматривается размещать для их использования в последующих технологиях. Для этой цели служат разнообразные системы управления базами данных и знаний (СУБД), в частности, ориентированных на гипертекстную и мультимедийную форму представления данных[8].

Техническая составляющая полевых археологических исследований представлена разнообразной электронной аппаратурой, используемой в процессе раскопок: электронные теодолиты, СГП (GPS), триангуляционные локаторы, пантографы, цифровые камеры. Лабораторное оборудование: электронные микроскопы, датчики температур и т.д. Измерения с использованием цифраторов (длина, ширина, площадь, периметр, форма артефактов, планы памятников), видеозахват и анализ изображений, калибровка по С14 и т.д.[12]

Технологии создания данных продолжают технологии накопления археологических данных. Они включают в себя процедуры по актуализации (частичному или полному обновлению, удалению или корректировке) этих данных, а также модификации формы представления информации, заносимой или хранимой в базах данных.

И в технологиях создания, и в технологиях накопления важную роль играет приведение информации к виду и формам, наиболее целесообразным для хранения и использования, исходя из содержания информации, её важности, сроков хранения.

С описанными выше технологиями создания и накопления археологиче­ских данных тесно связана технология предоставления (доступа к) инфор­мации археологических исследований, с которыми она фиксируется в ар­хеологических базах данных.

В технологии доступа включаются в первую очередь основные процедуры и операции по обеспечению удобного пользования собранными данными, обеспечивающие действенную защиту данных от несанкционированных действий пользователей, имеющих доступ к хранимой информации, или от сбоев оборудования. В них важное значение придаётся обеспечению возможности удалённой обработки археологических данных. Ключевая роль в этом вопросе принадлежит СУБД [1].

Обеспечение удобного пользования данными включает в себя и образовательную функцию. Мультимедиа используется, в частности, для обучающих программ, либо содержит базу ресурсов. Например, базы данных на CD-ROM, в которой можно проводить поиск, или модели раскопок, где предлагается шаг за шагом пройти все ступени проведения археологических работ, просмотр информации и ответы на вопросы или поиск специфической информации в своего рода базе данных (текст, графика, анимация, фотографии, видео, цифровой звук, распознавание речи).

Все образовательные технологические приспособления за последние 30 - 40 лет (эпидиаскопы, диапроекторы, допускающие попутные комментарии, аудио и видеокассеты и проигрыватели, кинопроекторы) стали доступны в "одном лице" и могут быть организованы так, как это не было доступно ранее. Это позволяет студентам участвовать в процессе путем выполнения определенных действий и ответов на вопросы. Налицо перспективы появления CD-ROM'ов с археологическими коллекциями/памятниками/публикациями в продаже или в музеях и библиотеках [11].

Технологии обработки данных археологических исследований являются наиболее важным и ответственным звеном в структуре понятий археологической информатики. Они представляют собой фактически комплекс функциональных подсистем, под потребности и возможности которых должны подстраиваться другие типы технологий, выполняя для комплекса функции обеспечивающих подсистем. Разумеется, процедуры обработки данных и, соответственно, технологии, предназначенные для этих целей, рассредоточены по всем этапам формирования, представления, хранения, собственно обработки, передачи археологической информации, составляя, во-первых, программно-техническое и технологическое ядро. Однако наиболее важную роль играет подсистема собственно обработки археологических данных, в которой сосредоточены и задействованы основные методы, модели, алгоритмы и технологии по современным формам проведения археологических исследований с использованием технических средств. Их использование даёт возможность получать новые знания о жизни людей и природных процессах в далёком прошлом за счёт обобщения имеющихся археологических данных и выделения в них наиболее важной информации методами информатики. Можно с полным основанием говорить, что технологии обработки информации суть технологии собственно археологических исследований. Среди них: экспертные системы с помощью которых возможно установление типа артефакта или материала; пространственный анализ: совстречаемость артефактов в пространстве, что позволяет восстановить картину (распространение поселений, социальная стратификация); создание графиков (линейные графики, диаграммы, 3-х мерные диаграммы и другие их разновидности), иллюстраций: структурные схемы, рисунки предметов, реконструкции, планы поверхностей; отображение: создание 3-х мерных проволочных или полноцветных моделей раскопов, контуров поверхности, плотности распределения находок; соподчинение артефактов (или костяков, пыльцы), кластерный анализ, в частности, использование мультивариантных статистических методов (скопления материала и др.); симулирование и системное моделирование: представление археологической проблемы как системы определенных правил, ограничений, входящих и исходящих ресурсов. Попытка представить и даже предсказать поведение во времени или исключить наиболее важные факторы, как, например, Колонизация Америки, крушение империи майя [12].

Технологии передачи данных в научных исследованиях вообще (а не только в археологии) появились лишь в последнее время. В значительной мере их появление и развитие обусловлены распределённой и удалённой обработкой и хранением информации. В первую очередь это связано с использованием сетевой технологии (прежде всего технологии локальных сетей) и удалённого доступа по каналам глобальных информационных сетей.

3.2 Использование ГИС-технологий в археологии

ГИС, или геоинформационные системы являются новым типом интегрированных компьютерных систем, появившихся на свет в конце XX века. Сейчас это наиболее перспективная и универсальная система управления геоданными. Несмотря на то, что разработка ГИС началась более 30 лет назад, наиболее бурное и качественное развитие они получили за последние 7-8 лет, а удешевление техники и значительное увеличение ее вычислительной мощности сделало, наконец, возможным применение ГИС в археологических исследованиях[10]. Наиболее общее определение для ГИС - это автоматизированная информационная система, предназначенная для обработки пространственно-временных данных, основой интеграции которых служит географическая информация [12]. Именно пространственная привязка археологического объекта и представляет наибольшую ценность в системе. ГИС - мощная и гибкая система управления геоданными. Основное ее преимущество перед обычными СУБД в том, что по своей структуре она является СУБД, но географической привязкой данных в 2-х или 3-х мерном пространстве к определенной точке на местности. Кроме того, ГИС имеет встроенную систему пространственного анализа, какой нет в обычной СУБД. Элементы географической (археологической) карты снабжаются семантикой, которая может быть проанализирована. Взаимоотношения между этими элементами также могут быть проанализированы. Более всего ГИС удобны и полезны при создании археологических информационных систем отдельных географических регионов, планов раскопок археологических памятников, изучении древних карт, палеорельефа. Современные ГИС позволяют анализировать не только векторные данные, но и растровые и текстовые.

Разновидности ГИС:

1. Инструментальные ГИС (instrumental GIS) – системы, обеспечивающие ведение картографических БД, пространственный анализ данных, обработку сложных запросов и вывод твёрдых копий;

2. ГИС-«вьюверы» (viewer GIS) – системы, обеспечивающие просмотр введённых ранее данных, выполнение запросов к сформированным инструментальными ГИС базами данных, организацию вывода оформленного картографического планшета на твёрдый носитель;