Смекни!
smekni.com

«искривляющееся» (стр. 9 из 13)

При аннигиляции e

происходит восстановление целостности диполя эфирной цепочки, что приводит к преобразованию двух объемных вихрей частиц в два плоских вихря, охваченных восстановившейся эфирной цепочкой, то есть к образованию двух фотонов по 511кэВ, уносящих энергию аннигиляции. В акте аннигиляции наличие ядра вблизи не требуется и место аннигиляции не «привязано» к расположению ядер или других частиц.

4.5. Взаимодействие электрона и цепочек. Возбуждение электромагнитной волны

Электромагнитные волны радиочастотного диапазона представляют собой колебания эфирных цепочек, находящихся в контакте с теми электронами или ионами, коллективное движение которых организовано генератором (передатчиком).

Электромагнитные излучения в виде отдельных фотонов не могут быть сформированы только одними электронами (или другими заряженными микрообъектами), а генерируется системами из элементарных частиц, например, возбужденными атомами или в ядерных реакциях. Процесс возникновения фотонов рассмотрен в п. 5.2.

В областях или точках пространства, где значение векторов Е и Н поля обращаются в нуль, «исчезновение» материи поля нет – эта область соответствует невозмущенному состоянию цепочечного эфира. Если поле знакопеременное, то в точках смены знака кинетическая энергия электрической и магнитной компонент переходит в потенциальную энергию МК и ЭЦ.

4.6. Пионы и нуклоны

Существование явлений фотоэффекта на ядре, которое сопровождающееся рождением пионов и фотоэффекта на нуклонах с появлением протона и антипротона, говорит об эфирном устройстве этих объектов. Детальное обсуждение мезонного и глюонного эфира выходит за рамки данной работы, поэтому приведем лишь общее представление о строении

- мезонов.

В соответствии с предлагаемой моделью эфира

- мезоны представляют собой кластеры из эфирных диполей сложенных плотно друг к другу в виде «гармошки». Для формирования такой структуры происходит поворот диполя в эфирной цепочке на угол
радиан в точках Q (Рис.1). «Гармошки» мезонов замкнуты в кольцо, причем у
- мезона внутри кольца находится электрон, а у
+ - позитрон. Элементарные частицы внутри
0 мезона отсутствуют.

Эти кластеры приводят в движение большой объем МК и тем самым обеспечивают необходимую массу покоя мезонов.

При таком подходе следует считать, что нуклоны представляют собой следующую ступень в организации эфира и состоят уже из мезонных кластеров.

5.Модель атома

5.1.Стабильный одноэлектронный атом

Атом качественно можно представить, как динамическую систему, состоящую из протона, электрона и общих эфирных цепочек, «загруженных» электрофотонами (Рис.8). Сила кулоновского притяжения ядра и электрона, создаваемая электрофотонами, уравновешиваются магнитными силами элементарных частиц. Электрон и протон ориентированы в пространстве так, что их магнитные потоки образуют магниты, разноименными полюсами направленными навстречу друг другу. Такая система, будучи устойчивой, может не вращаться относительно центра масс.

Рис.8. Стабильный одноэлектронный атом

Устойчивость атомной системы обеспечивается за счет отрицательной обратной связи, возникшей по эфирным цепочкам. При удлинении эфирных цепочек за счет внешнего кратковременного дестабилизирующего действия (например, появление рядом свободного электрона) электрическое притяжение ослабевает, но во столько же раз ослабевает и магнитное отталкивание. При противоположном знаке дестабилизирующего фактора возникает и противоположная реакция системы, что соответствует автоматическому действию внутренней отрицательной обратной связи.

5.2. Возбужденный атом

Фотон возбуждения (А на Рис.9) по внешней ЭЦ поступает на одну из внутриатомных цепочек. На этой цепочки он практически без потерь перемещается между электроном и протоном (Б на Рис.9).

Рис.9. Возбужденный одноэлектронный атом

В квазиустойчивом состоянии атома, относительное положение электрона и протона меняются так, чтобы между ними могла существовать волна эфирной цепочки с частотой фотона возбуждения. Такое состояние атома является неустойчивым, поскольку часть внутренних ЭЦ становится длиннее, и это заставляет атом изменить баланс электрических и магнитных сил.

Таким образом, фотон, возбудивший атом, не исчезает в пучине физического вакуума, а циркулирует внутри этого атома.

За счет соединения отдельных эфирных цепочек на «поверхностях» электрона и протона они приобретают вид замкнутой (бесконечной для фотона) линии, и поэтому фотоны с длинами волн большими атомных размеров могут циркулировать во внутриатомном пространстве.

Введенная тем или иным способом энергия в структуру атома, то есть в структуру связи «электрон- протон» сохраняется в ней определенное время, в виде циркулирующего на замкнутой эфирной цепочке солитона – кванта.

Неуничтожимость фотона определяет суть закона сохранения энергии.

5.3.Спонтанное излучение

Встроенный в атом фотон возбуждения может покинуть его в том случае, когда он случайно попадет с внутренней цепочки на внешнюю. Условия квазиустойчивости нарушаются, и фотон излучается из внутриатомного пространства по этой цепочке.

Другими словами спонтанное излучение фотона можно объяснить не флуктуациями физического вакуума, а случайным характером взаимодействия «внутриатомного» фотона с внешними эфирными цепочками, окружающими электрон.

5.4.Лэмбовский сдвиг

Объяснение лэмбовского сдвига между, например, уровнями 2s1/2 и 2p1 /2 в атоме водорода в рамках квантовой электродинамики также трактуется влиянием флуктуаций физвакуума на движущийся по орбите вблизи ядра электрон.

Столь же успешно это явление может быть объяснено и взаимодействием электрона с флуктуациями числа эфирных цепочек во внутриатомном пространстве. Его среднее смещение относительно протона равно нулю, но квадратичное значение отклонения отлично от нуля, в результате чего на электрон действуют со стороны ядра варьирующееся кулоновские и магнитные силы.

Другие квантовые эффекты в возбужденном атоме рассмотрены в разделе 9.2.

6. Взаимодействие эфирных цепочек с веществом

6.1. Отражение и преломление света

На поверхности электрона концентрация ЭЦ создает условия для взаимодействия фотонов и их переходов на другие ЭЦ. Например, фотон с цепочки ЭЦ1 может перейти на цепочку ЭЦ2 с изменением фазы электрической компоненты (направления отклонения циклоиды) на величину

(Рис.10) без изменения фазы магнитной (направление вращения магнитного континуума).

Рис.10.Отражение фотонов (показаны две ЭЦ в одной плоскости)

Так образом, отражение формируются на электроне, позитроне, протоне и других элементарных частицах. Отраженный луч будет поляризован в силу регулярного расположения эфирных цепочек на поверхности электрона и направленного вращения «вихря» МК элементарной частицы.

6.2. Движение фотонов в конденсированной среде

В оптически более плотной среде происходит увеличение длины пути фотона за счет удлинения ЭЦ. Механизм удлинения заключается в том, что атомные ядра вытесняют эфирные цепочки из занимаемого объема и, тем самым, повышают плотность ЭЦ вблизи поверхности ядер. В связи с этим цепочки изгибаются в сторону меньшего их градиента, удлиняются и создают волнистость вида Рис.11.

Рис.11.Удлинение ЭЦ ядрами атомов прозрачных сред

В прозрачной среде это приводит к кажущемуся снижению скорости фотона в направлении его движения. При этом собственная скорость фотона на цепочке остается постоянной.

Отсюда становится очевидным, почему изменение скорости светового луча на границе сред происходит скачком. Все светонесущие цепочки в конденсированном веществе удлиняются и наблюдаемая скорость света в среде, содержащей атомы, всегда будет ниже, чем в среде, содержащей только ЭЦ (т.е. в свободном эфире).

Частота колебаний фотона на ЭЦ в любой окружающей среде остается неизменной по причине независимости физических свойств цепочки и МК от того, где они находится: в веществе или вне него. Для волны переход в другую среду на параметрах её движения не отражается, поскольку условия распространения на цепочке остаются неизменными.