Смекни!
smekni.com

«История развития математики на Земле» (стр. 3 из 3)

Итак, позиционная система счисления возникли независимо одна от другой в древнем Двуречье, у племени майя и, наконец, в Индии. Все это говорит о том, что возникновение позиционного принципа не было случайностью.
Каковы же были предпосылки для его создания? Чтобы ответить на эти вопросы, мы снова обратимся к истории. В древнем Китае, Индии и в некоторых других странах существовали системы записи, построенные на мультипликативном принципе. Пусть, например, десятки обозначаются символом Х, а сотни – С. Тогда запись числа 323 схематично будет выглядеть так: 3С2Х3.

В таких системах для записи одинакового числа единиц, десятков, сотен или тысяч применяются одни и те же символы, но после каждого символа пишется название соответствующего разряда.

Следующей системой к позиционному принципу было опускание разрядов при письме (подобно тому как мы говорим «три двадцать», а не «три рубля двадцать копеек»). Но при записи больших чисел по системе с основанием 10 очень часто был необходим символ для обозначения нуля.

Как же появился нуль? Мы знаем, что уже вавилоняне употребляли межразрядовый знак. Начиная со второго века до нашей эры греческие ученые познакомились с многовековыми астрономическими наблюдениями вавилонян. Вместе с их вычислительными таблицами они переняли и вавилонскую шестидесятеричную систему счисления, но только числа от 1 до 59 записывали не с помощью клиньев, а в своей, алфавитной нумерации. Но самое замечательное было то, что для обозначения пропущенного шестидесятеричного разряда греческие астрономы начали употреблять символ О (первая буква греческого слова – ничто). Этот знак, по-видимому, и был прообразом нашего нуля. Действительно, индийцы, владевшие уже мультипликативным принципом записи чисел, как раз между вторым и шестым веками нашей эра познакомились с греческой астрономией. Одновременно они познакомились с шестидесятеричной нумерацией и греческим круглым нулем. Индийцы и соединили принципы нумерации греческих астрономов со своей десятичной системой. Это и был завершающий шаг в создании нашей нумерации. Из Индии новая система распространилась по всему миру. В страны Европы новая индийская нумерация была занесена арабами в десятом – тринадцатом веках (отсюда и название «арабские цифры»). Постепенное изменение написание цифр можно проследить по рисунку …

9. КАК В ДРЕВНОСТИ ВЫПОЛНЯЛИ АРИФМЕТИЧЕСКИЕ ДЕЙСТВИЯ.

Если со сложением и вычитанием ни у египтян, ни у вавилонян, то хуже обстояло дело с умножением. И тут египтяне придумали интересный выход: они заменили умножением на любое число удвоением, то есть сложением числа самим с собой. Например, если надо было умножить число 34 на 5, то поступали так: умножали 34 сначала на 2, потом ещё раз на 2. Записывали столбиками (конечно, в своих обозначениях чисел) ...

1 34
2 68
4 136

Похожий способ умножения применялся через несколько тысяч лет русскими крестьянами. Пусть требуется умножить 37 на 32. Составляли два столбца чисел – один удвоением, начиная с числа 37, другое раздвоением ( то есть делением на два ), начиная с числа 32 :

37 32
74 16
148 8
296 4
592 2
1184 1

По другому пути пошли в Вавилоне. Они сосчитали раз навсегда с помощью повторного сложения произведения и полученные результаты занесли в таблицу. Вавилоняне любили составлять таблицы. У них были таблицы квадратов и кубов, обратных чисел и даже сумм квадратов и кубов.

10. АБАК И ПАЛЬЦЕВЫЙ СЧЕТ.

Греки и римляне производили вычисления с помощью специальной счетной доски - абака. Доска абака была разделена на полоски. Каждая полоска назначалась для откладывания тех или иных разрядов чисел: в первую полоску ставили столько камешков или бобов, сколько в числе единиц, во вторую полоску - сколько в нем десятков, в третью - сколько сотен, и так далее. На рисунке показано число 510 742. Так как у римлян камешек называли калькулюс (сравните с русским словом "галька"), то счет на абаке получил название калькуляция. И сейчас подсчет расходов называют калькуляцией, а человека, выполняющего этот подсчет - калькулятором. Но после того как два десятка лет тому назад были сделаны маленькие приборы, выполняющие за считанные секунды сложные расчеты, название "калькулятор" перешло к ним.
Один и тот же камешек на абаке мог означать и единицы, и десятки, и сотни, и тысячи - все дело лишь в том, на какой полоске он лежал. Чаще всего абаком пользовались для денежных расчетов. Наши счеты представляют собой также абак, в котором место полосок занимают проволоки для единиц, десятков и т. д. А у китайцев на каждой проволоке не по десять шариков, как в наших счетах, а по семь. Последние два шарика отделены от первых, и каждый из них обозначает пять. Когда при расчетах набирается пять шариков, вместо них откладывают один шарик второго отделения счетов. Такое устройство китайских счетов уменьшает необходимое число шариков.
Счет на абаке сменил более древний счет на пальцах. Приверженцы старого метода стали его совершенствовать. Они научились даже умножать на пальцах однозначные числа от 6 до 9. Для этого на одной руке вытягивали столько пальцев, на сколько первый множитель превосходит число 5, а на второй делали то же самое для второго множителя. Остальные пальцы загибали. Потом бралось число вытянутых пальцев и умножалось на 10, далее перемножались числа, показывавшие, сколько загнуто пальцев на руках. К числу вытянутых пальцев, умноженному на 10, добавлялось полученное произведение.
В дальнейшем пальцевой счет был усовершенствован, и с помощью пальцев научились показывать числа до 10 000. А китайские купцы торговались, взяв друг друга за руки и указывая цену нажатием на определенные суставы пальцев.

Возникновение чисел позволило решать сложные задачи, встречавшиеся в практической деятельности, пришлось, кроме натуральных чисел, придумать другие числа – обыкновенные, десятичные дроби, отрицательные числа, научиться использовать пропорции, а потом создать новую науку – алгебру, позволявшую решать любые задачи с помощью уравнений.

Когда – то числа служили только для решения практических задач. А потом их стали изучать – узнавать их свойства. С помощью чисел выражали и такие понятия, как справедливость, совершенство, дружба. Ученые установили, как по записи числа узнать, на какие другие числа они делятся. Они научились находить простые числа и стали изучать их свойства.

Много веков мечтали люди создать машины, которые бы сами выполняли порученные им работы – ткали и пряли, ковали и вытачивали. Чтобы создать такие автоматы, понадобились машины, умеющие выполнять арифметические операции, понимать и перерабатывать различные сведения. Сейчас машины – математики применяются во всех областях человеческой деятельности.

Приложение

Рисунок 1

Клинописная запись чисел в древнем Вавилоне

Рисунок 2

Цифры в древнем Египте

Рисунок 3

Рисунок 5 Цифры индейцев племени майя

Рисунок 6 Алфавитное изображение чисел в Древней Греции.

Рисунок 7 Обозначение чисел в Древнем Риме.

Рисунок 8 Обозначение чисел в Древней Руси

Легион

Тьма

Леодр

Ворон

КОЛОДА

Самое большое число — колода. Буква заключалась в квадратные скобки, но не справа и слева, как у обычных букв, а сверху и снизу. Плюс справа и слева ставились два ромбика.

Запись в славянской нумерации числа 444