Дьявольский магический квадрат - магический квадрат, в которой также с магической константой совпадает сумма чисел по ломаным диагоналям (диагонали, которые образуются при сворачивании квадрата в тор) в обоих направлениях.
Такие квадраты называют ещё пандиагональными.
Существует 48 дьявольских магических квадратов 4х4 с точностью до поворотов и отражений. Если принять во внимание ещё и их дополнительную симметрию – торические параллельные переносы, то останется только 3 существенно различных квадрата:
Рис. 5 рис. 6
1 | 8 | 13 | 12 |
14 | 11 | 2 | 7 |
4 | 5 | 16 | 9 |
15 | 10 | 3 | 6 |
1 | 12 | 7 | 14 |
8 | 13 | 2 | 11 |
10 | 3 | 16 | 5 |
15 | 6 | 9 | 4 |
Рис.7
1 | 8 | 11 | 14 |
12 | 13 | 2 | 7 |
6 | 3 | 16 | 9 |
15 | 10 | 5 | 4 |
Однако было доказано, что (рис.7) простейшими перестановками чисел получаются первые два квадрата (рис.5;6). То есть третий вариант- это базовый дьявольский квадрат, из которого различными преобразованиями можно построить все остальные.
Пандиагональные квадраты существуют для нечётного порядка n>3, для любого порядка двойной чётности n=4k (k=1,2,3…) и не существуют для порядка одинарной чётности n=4k+2 (k=1,2,3…).
Пандиагональные квадраты четвёртого порядка обладают рядом дополнительных свойств, за которые их называют совершенными. Совершенных пандиагональных квадратов нечётного порядка не существует. Среди пандиагональных квадратов чётности выше 4 имеются совершенные.
Пандиагональных квадратов пятого порядка 3600. С учётом торических параллельных переносов имеется 144 различных пандиагональных квадратов. Один из них показан ниже.
1 | 15 | 24 | 8 | 17 |
9 | 18 | 2 | 11 | 25 |
12 | 21 | 10 | 19 | 3 |
20 | 4 | 13 | 22 | 6 |
23 | 7 | 16 | 5 | 14 |
ПРАВИЛА ПОСТРОЕНИЯ МАГИЧЕСКИХ КВАДРАТОВ
Правила построения магических квадратов делятся на три категории в зависимости от того, каков порядок квадрата: нечетен, равен удвоенному нечетному числу или равен учетверенному нечетному числу. Общий метод построения всех квадратов неизвестен, хотя широко применяются различные схемы.
Найти все магические квадраты порядка n удается только для, n=3,4 поэтому представляют большой интерес частные процедуры построения магических квадратов при n>4.Проще всего конструкция для магического квадрата нечетного порядка. Нужно в клетку с координатами (х,y) поставить число.
Ещё проще построение выполнить следующим образом, берется матрица n x n.Внутри её строится ступенчатый ромб. В нем ячейки слева вверх по диагоналям заполняются последовательным рядом чисел. Определяется значение центральной ячейки С.
Тогда в углах магического квадрата значения будут такими: верхняя правая ячейка С-1; нижняя левая ячейка С+1; нижняя правая ячейка С-n; верхняя левая ячейка С+n.
СОСТАВЛЕНИЕ МАГИЧЕСКИХ КВАДРАТОВ.
Каким же образом составляют магические квадраты?
Создание магического квадрата «Ло-Шу».
Задача: Квадрат 3х3, составить из цифр от 1 до 9, так, что бы суммы чисел в каждых строках, столбцах и по диагоналям были равны.
Решение: Решим задачу, не прибегая к перебору одной за другой всех перестановок 9 цифр в 9 клетках (число таких расстановок равно 362880). Будем рассуждать так. Сумма всех чисел от 1 до 9: 1+2+3+4+5+6+7+8+9=45. Значит, в каждой строке и в каждом столбце сумма чисел должна равняться: 45:3=15. Но если просуммировать все числа во-вторых столбце и строке и в обеих диагоналях, то каждое число войдёт один раз, за исключением центрального, которое войдёт четырежды. Значит, если обозначить центральное число через х, то должно выполняться равенство 4*15=3х+3*15. Отсюда х=5, то есть в центре таблицы должно стоять число 5.
Теперь заметим, что число 9 не может стоять в углу таблицы, скажем в левом верхнем углу. Ведь тогда в противоположном углу стояло бы число 1, а на первые строку и столбец оставалась бы одна комбинация - числа 4 и 2. Значит, 9 стоит в середине каких-то крайних строк или столбцов (у нас в середине первой строки). Двумя другими числами этой строки являются 4и2, а третьим числом среднего столбца должно быть 15-9-5=1. В одной строке с 1 должны стоять числа 8 и 6. Тем самым, магический квадрат почти заполнен и легко найти место для оставшихся чисел. В результате получается квадрат «Ло-Шу».
Конечно, для 9 можно выбрать другие три места, а после выбора места для этого числа остаются две возможности для расположения чисел 4 и 2. Всего получается 4*2=8 различных магических квадратов из трёх строк и трёх столбцов (или, как говорят математики, квадратов третьего порядка). Все эти квадраты можно получить на «Ло-Шу» либо поворачивая квадрат на 180,90 или 270. Еще возможен вариант зеркального отображения.
Квадрат
«Ло-Шу»
4 | 9 | 2 |
3 | 5 | 7 |
8 | 1 | 6 |
Создание магического квадрата
Альбрехта Дюрера.
Задача: Создать магический квадрат 4х4, из цифр от 1 до 16, так, что бы суммы чисел в каждых строках, столбцах и по диагоналям были равны.
Решение: Сумма всех чисел от 1 до16: 1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16=136. Значит, в каждой строке и в каждом столбце сумма чисел должна равняться:136:4=34. Но если просуммировать все числа, во-вторых, в столбце и строке и в обеих диагоналях, то каждое число войдёт один раз, за исключением центральных, которые войдут дважды. Этими числами будут 10,11,6,7. После чего доставим остальные числа 1,2,3,4,5,8,9,12,13,14,15,16 в остальные ячейки
В переводе с Японского «су» означает «цифра», а «доку» - «стоящая отдельно».
Не надо гадать или капаться в книгах – только логика и внимательность!
Задача: заполните пустые клетки цифрами от 1 до 9 так, чтобы в любой строке, любом столбце и в каждом из 9 блоков 3х3 цифра не повторялась.
Решение: шаг 1
Посмотрим на выделенный ряд. В нем не хватает только двух цифр: 1 и 2.Взглянем на первую пустую клетку справа. Можем мы вписать туда 1? Нет. Потому что в этой колонке 1 уже есть, а повторяться эти цифры в колонке не могут. Значит, в эту клетку мы можем вписать лишь 2. Так и сделаем. Теперь нам осталось только вписать цифру 1 в пустую, последнюю клетку в этом ряду, и ряд заполнен.
9 | 2 | 3 |
| 7 |
| 4 | 5 | |
8 | 3 |
| 1 |
| 4 | 6 |
| 7 |
6 |
|
| 8 |
| 5 |
| 3 |
|
7 | 8 | 3 | 6 | 5 | 1 | 4 | 2 | 9 |
|
|
| 4 | 7 | 3 | 1 | 5 | 8 |
5 | 1 | 4 |
| 8 |
| 7 |
|
|
| 6 |
| 5 | 1 | 8 |
|
| 4 |
4 |
| 8 |
| 3 |
|
| 1 |
|
3 | 7 |
|
| 4 |
| 5 |
| 2 |
Шаг 2