Смекни!
smekni.com

Правила построения магических квадратов составление магических квадратов (стр. 1 из 4)

ХIII научно-практическая конференция школьников

РЕФЕРАТ

«Магические квадраты»

Ученицы 8 «А» класса

ПТП лицея

Шолоховой Анны

Руководитель Анохина М.Н.

Псков

2008 год


СОДЕРЖАНИЕ.

История создания моей работы………………………………………………2

Магический квадрат.......................................................................3

Исторически значимые магические квадраты...................4-5

КВАДРАТ, НАЙДЕННЫЙ В КХАДЖУРАХО(ИНДИЯ).........6

Магический квадрат Ян Хуэя (Китай).........................................7

Квадрат Альбрехта Дюрера ...........................................................8

Квадраты Генри Э. Дьюдени и Аллана У. Джонсона-мл.....9

Дьявольский магический квадрат .........................................10-11

ПРАВИЛА ПОСТРОЕНИЯ МАГИЧЕСКИХ КВАДРАТОВ .....12

СОСТАВЛЕНИЕ МАГИЧЕСКИХ КВАДРАТОВ......................13-15

Создание магического квадрата Альбрехта Дюрера. .....17-18

Судоку............................................................................................19-21 Какуро............................................................................................22-23

БАНК ЗАДАЧ..................................................................24-25

Выводы................................................................................26 Литература...........................................................................27

История создания моей работы.

Раньше я даже не задумывалась, что такое можно придумать. Первый раз магические квадраты встретились мне в первом классе в учебнике, они были самые простые.
7
8 0
5

Через несколько лет с родителями я поехала на море познакомилась с девочкой, которая увлекалась судоку. Мне тоже захотелось научиться, и она объяснила, как это делать. Это занятие мне очень понравилось, и оно стало моим так называемым хобби.

После того как мне предложили участвовать в научно-практической конференции, я сразу выбрала тему «Магические квадраты». В этой работу я включила исторический материал, разновидности, правила создания игру-загадку.
Магический квадрат.

Магический, или волшебный квадрат-это квадратная таблица, заполненная n числами, таким образом, что сумма чисел в каждой строке, в каждом столбце и на обеих диагоналях оказывается одинаковой. Нормальным называется магический квадрат, заполненный целыми числами от 1 до n .

Магические квадраты существуют для всех порядков, за исключением n=2, хотя случай n=1 тривиален - квадрат состоит из одного числа.

Сумма чисел в каждой строке, столбце и на диагоналях. Называется магической константой, М. Магическая константа нормального волшебного квадрата зависит только от n и определяется формулой.

Порядок n
3 4 5 6 7 8 9 10 11 12 13
М(n) 15 34 65 111 175 260 369 505 671 870 1105

Первые значения магических констант приведены в следующих таблице.

Исторически значимые магические квадраты.

В китайской древней книге «Же-ким» («Книга перестановок») приводится легенда о том, что император Ню, живший 4 тысячи лет назад, увидел на берегу реки священную черепаху. На её панцире был изображен рисунок из белых и черных кружков(рис.1). Если заменить каждую фигуру числом, показывающим сколько в ней кружков, получится таблица.
4 9 2
3 5 7
8 1 6

У этой таблицы есть замечательное свойство. Сложим числа первого столбца: 4+3+8=15.тот же результат получится при сложении чисел второго, а так же третьего столбцов. Он же получается при сложении чисел любой из трех строк. Мало этого, тот же ответ 15 получается, если сложить числа каждой из двух диагоналей: 4+5+6=8+5+2=15.

Наверное, эту легенду китайцы придумали, когда нашли расположение чисел от 1 до 9 со столь замечательным свойством. Рисунок они назвали «ло-шу» и стали считать его магическим символом и употреблять при заклинаниях. Поэтому сейчас любую квадратную таблицу, составленную из чисел и обладающую таким свойством, называют магическим квадратом.

Рис.1


КВАДРАТ, НАЙДЕННЫЙ В КХАДЖУРАХО(ИНДИЯ).

Самый ранний уникальный магический квадрат обнаружен в надписи ХI века в индийском городе Кхаджурахо.

7

12

1

14

2

13

8

11

16

3

10

5

9

6

15

4

Это первый магический квадрат, относящийся к разновидности так называемых «дьявольских» квадратов.

Магический квадрат Ян Хуэя (Китай)

В XIII веке математик Ян Хуэй занялся проблемой методов построения магических квадратов. Его исследования были, потом продолжены другими китайскими математиками. Ян Хуэй рассматривал магические квадраты не только третьего, но и больших порядков.

Некоторые из его квадратов были достаточно сложны, однако он всегда давал правила для их построения. Он сумел построить магический квадрат шестого порядка.

27

29

2

4

13

36

9

11

20

22

31

18

32

25

7

3

21

23

14

16

34

30

12

5

28

6

15

17

26

19

1

24

33

35

8

10

Квадрат Альбрехта Дюрера

Магический квадрат 4х4, изображенный на гравюре А. Дюрера «Меланхолия I», считается самым ранним в европейском искусстве. Два средних числа в нижнем ряду указывают дату создания картины(1514)

16

3

2

13

5

10

11

8

9

6

7

12

4

15

14

1

Сумма чисел на любой горизонтали, вертикали и диагонали равна 34 . Эта сумма также встречается во всех угловых квадратах 2х2, в центральном квадрате (10+11+6+7), в квадрате из угловых клеток (16+13+4+1), в квадратах, построенных «ходом коня» (2+8+9+15 и 3+5+12+14), прямоугольниках, образованных парами средних клеток на противоположных сторонах (3+2+15+14 и 5+8+9+12).Большинство дополнительных симметрий связано с тем, что сумма любых двух центрально симметрично расположенных чисел равна 17.
Квадраты Генри Э. Дьюдени и Аллана У. Джонсона-мл.

Если в квадратную матрицу n х n заносится нестрого натуральный ряд чисел, то данный магический квадрат - нетрадиционный. Ниже представлены два таких магических квадрата, заполненные в основном простыми числами. Первый (рис.3) имеет порядок n=3 (квадрат Дьюдени); второй (рис.4) (размером 4х4)- квадрат Джонсона. Оба они были разработаны в начале двадцатого столетия.

67

1

43

13

37

61

31

73

7

Рис.3 рис.4

3

61

19

37

43

31

5

41

7

11

73

29

67

17

23

13

Дьявольский магический квадрат