Смекни!
smekni.com

Тема 14. Телекоммуникации и связь кому неведомо всегдашнее несоответствие между тем, что человек ищет и что находит? (стр. 3 из 5)

Волоконно-оптические кабели (ВОК) состоят из центрального проводника света (волокна), окруженного другим проводником – оболочкой. Оболочка обладает меньшим показателем преломления, чем сердцевина, поэтому излучение не выходит за пределы волокна.

Различают одномодовое волокно (дорогое, очень тонкого диаметра), с полосой пропускания сотни гигагерц, и многомодовое волокно, с более широким сердечником и меньшей полосой пропускания (500-800 МГц). В многомодовом волокне из-за относительно больших размеров электромагнитная волна высокой частоты может распространяться в нескольких режимах (модах), с разными скоростями, что приводит к искажениям передачи информации. Поэтому верхняя граничная частота такого волокна ограничена нижней частотой возникновения высших мод.

В качестве источников света в ВОК используют светодиоды и полупроводниковые лазеры. Для передачи информации используется свет с длиной волны 850-1300 нм.

Способы передачи данных. Для передачи данных используются способы с максимальным использованием свойств каналов по скорости и достоверности передачи данных.

Данные первоначально предоставляются последовательностью прямоугольных импульсов. Для их передачи без искажения требуется полоса частот от нуля до бесконечности. Реальные каналы имеют конечную полосу частот, с которой необходимо согласовать передаваемые сигналы. Согласование обеспечивается, во-первых, путем модуляции – переноса сигнала на заданную полосу частот и, во-вторых, путем кодирования – преобразовании данных в вид, позволяющий обнаруживать и исправлять ошибки, возникающие из-за помех в канале связи.

При использовании высокочастотных проводных и кабельных линий, полоса частот которых начинается практически от нуля, сигналы можно передавать в их естественном виде без модуляции. Каналы, работающие без модуляции, называются телеграфными и обеспечивают передачу данных со скоростью, как правило, 50-200 бит/с.

Если канал имеет ограниченную полосу частот (например, радиоканал), перенос сигнала в заданную полосу производится посредством модуляции. В этом случае между оконечным оборудованием данных, работающим с двоичными сигналами, и каналом устанавливается модем – модулятор и демодулятор. Модулятор перемещает спектр первичного сигнала в окрестность несущей частоты fo. Демодулятор выполняет над сигналом обратное преобразование, формируя из модулированного сигнала импульсный двоичный сигнал.

Способы модуляции подразделяются на аналоговые и дискретные.

Аналоговая модуляция применяется для передачи дискретных данных по каналам с узкой полосой частот, например, по каналу тональной частоты телефонных сетей. Информация кодируется изменением амплитуды, частоты или фазы гармонического сигнала несущей частоты.

Амплитудная модуляция (АМ) выполняется модуляцией амплитуды несущей частоты информационным (модулирующим) сигналом. Амплитудную модуляцию кодовых последовательностей называют амплитудной манипуляцией (АМн). В зависимости от значения передаваемого двоичного элемента (бита) несущий сигнал может принимать одно из двух состояний: "включено" (наличие сигнала) – при передаче «1», либо "выключено" (отсутствие сигнала) – при передаче «0». Двоичную АМн называют on-off манипуляцией. В большинстве случаев амплитудную модуляцию объединяют с фазовой модуляцией (квадратурная модуляция), что повышает помехоустойчивость передачи данных и обеспечивает большую скорость передачи.

Частотная модуляция (ЧМ). При ЧМ под воздействием модулирующих сигналов изменяется частота несущего колебания. В случае частотной манипуляции (ЧМн) несущая частота выбирается из дискретного набора значений частот в соответствии с передаваемым битом или битовой последовательностью. В общем случае, для ЧМн может использоваться М=2n частот, каждая из которых представляет соответствующую n-битную последовательность. Так, в двоичной ЧМн используются две несущих частоты f01 и f02, одна для двоичного нуля, другая – для двоичной единицы. Этот способ модуляции не требует сложных схем в модемах и обычно применяется в низкоскоростных модемах, работающих на скоростях 300 или 1200 бит/с. При квадратурной частотной манипуляции применяются четыре частоты для передачи битных последовательностей: 00, 01; 10; 11.

Фазовая модуляция (ФМ). При ФМ в соответствии с последовательностью передаваемых информационных бит, изменяется фаза несущего синусоидального колебания f0. В случае фазовой манипуляции (ФМн) фаза несущей частоты может принимать одно из нескольких дискретных значений. В двоичной схеме ФМн (биты 0 и 1) значение фазы несущей может равняться либо 0о, либо 180о, в одном периоде несущего сигнала передается один бит информации. Для передачи двойных битов 00, 01, 10 и 11 в одном периоде сигнала используется квадратурная ФМн, при которой фаза может принимать одно из четырех значений соответственно: 45о, 135о, 225о, 315о или 0о, 90о, 180о, 270о.

При декодировании сигналов с ФМн фаза сигнала в приемнике сравнивается с фазой несущего колебания, что усложняет демодуляцию. На практике используется относительная фазовая манипуляция (ОФМн), при которой каждому информационному биту ставится в соответствие не абсолютное значение фазы, а ее изменение относительно предыдущего значения.

В скоростных модемах используются комбинированные методы модуляции, например, амплитудная в сочетании с фазовой. Применяемые коды имеют достаточно большое число состояний, например 4 различных уровня амплитуды в сочетании с восьмью возможными значениями сдвига фазы (квадратурная амплитудная модуляция). Часть из этих состояний являются запрещенными, и за счет этой избыточности реализуется коррекция ошибок.

Дискретная (цифровая) модуляция применяются для преобразования аналоговых сигналов, например речевых, в цифровые. Для этих целей наиболее широко используются амплитудно-импульсная, кодово-импульсная и время-импульсная модуляция.

Кодирование передаваемых данных производится в основном для повышения помехоустойчивости данных. Так, первичные коды символов могут быть представлены в помехозащищенной форме – с использованием кодов Хемминга, обеспечивающих обнаружение и исправление ошибок в передаваемых данных. В последнее время функция повышения достоверности передаваемых данных возлагается на оконечное оборудование данных и обеспечивается за счет введения информационной избыточности в передаваемые сообщения.

При цифровом кодировании дискретной информации применяют потенциальные и импульсные коды. В потенциальных кодах для представления логических единиц и нулей используется только значение потенциала сигнала. Импульсные коды позволяют представить двоичные данные либо импульсами определенной полярности, либо перепадом потенциала определенного направления.

При выборе метода цифрового кодирования к нему предъявляют следующие требования:

- Наименьшая ширина спектра результирующего сигнала. Узкий спектр сигналов позволяет добиваться высокой скорости передачи данных. Кроме того, часто к спектру сигнала предъявляется требование отсутствия постоянной составляющей.

- Возможность синхронизации между передатчиком и приемником. Как правило, в сетях применяются самосинхронизирующиеся коды, сигналы которых позволяют передатчику автоматически определять тактовую частоту передачи информационных битов (например, по резким перепадам сигналов).

- Возможность распознавания ошибок. Распознавание и коррекция ошибок реализуется средствами логического кодирования, или используется избыточность физических кодов.

Способы цифрового кодирования данных. В самосинхронизирующихся кодах каждый переход уровня сигнала от высокого к низкому уровню или наоборот используется для подстройки приемника. Лучшими считаются коды, которые обеспечивают переход уровня сигнала не менее одного раза в течение интервала времени на приеме одного информационного бита. Наиболее распространенными являются:

Потенциальный код без возвращения к нулю (NRZ - Non Return to Zero) – 0 и 1 кодируются различными уровнями сигнала. Это наиболее простой способ кодирования, но имеет постоянную составляющую в спектре. При передаче длинных серий одноименных битов (единиц или нулей) уровень сигнала остается неизменным для каждой серии, что снижает качество синхронизации и надежность распознавания принимаемых битов

Рис. 14.2.1.

Потенциальный код с возвращением к нулю (RZ - Return to Zero) – код, аналогичный NRZ, с возвращением к нулю на середине каждого тактового интервала. Имеет большее число переходов уровня сигнала, чем сигнал в коде NRZ.

Биполярное кодирование с альтернативной инверсией (AMI) – 0 кодируется нулевым потенциалом, а 1 – положительным или отрицательным ненулевым, причем потенциал каждой следующей единицы противоположен по знаку предыдущей. Спектр кода не содержит постоянной составляющей. Используется три уровня сигналов, что требует увеличения мощности передатчика. Обладает хорошими синхронизирующими свойствами при передаче серий единиц и прост в реализации. Недостатком кода является ограничение на плотность нулей в потоке данных, поскольку длинные последовательности нулей ведут к потере синхронизации.

Манчестерский код (PE - Phase Encode, фазовое кодирование) – наиболее популярный код, применяемый в локальных сетях. При манчестерском кодировании информация передается перепадами потенциала, происходящими в середине такта. Единица кодируется перепадом от низкого уровня к высокому, а ноль наоборот. В начале каждого такта может происходить, а может и не происходить служебный перепад (он происходит, если в предыдущем такте передаваемый бит имел то же значение, что и в текущем.). Манчестерский код обеспечивает изменение уровня сигнала при представлении каждого бита и не имеет постоянной составляющей.