Смекни!
smekni.com

Физика и физиология 4 (стр. 12 из 58)

Таким образом, для вдоха из легочного автомата дыхательная му­скулатура должна развить усилие в пределах 5 см водного столба, чтобы открыть клапан вдоха и поддерживать его в открытом состоя­нии. Для каждой модели легочника эта величина известна, обяза­тельно внесена в сопутствующую документацию и называется со­противлением вдоху. Слишком большое сопротивление вдоху раз­вивает усталость дыхательных мышц и вредно по ряду медицинских показателей.

Когда мы начинаем делать выдох, давление в воздушной камере возрастает до величины, необходимой для открытия клапана (кла­панов) выдоха. Эта величина называется сопротивлением выдоху и также не превышает в современных моделях 5 см водного столба. Когда усилие выдоха становится меньше этой величины, клапаны выдоха закрываются.

Величины, сопротивления вдоха и выдоха являются "сухопутны­ми", т.е. характеризуют работу легочного автомата на воздухе. При погружении в воду появляются дополнительные факторы, изменя­ющие усилия дыхания из акваланга. Если легочник находится на одном уровне с вашими легкими (рис. 2.13 А), величины сопротив­ления вдоха и выдоха примерно равны таковым на суше. Если лего­чник выше легких (рис. 2.13 Б), давление воды, действующее на мембрану и клапаны выдоха, несколько меньше, чем на ваши лег­кие, что слегка затрудняет вдох и облегчает выдох. Если же легоч­ный автомат ниже ваших легких (рис. 2.13 В) — вдох становится легче, выдох — тяжелее. Очевидно, что при погружении положе­ние вашего тела постоянно меняется, а вместе с ним меняются ди­намические характеристики работы легочного автомата. Сопроти­вление вдоху и выдоху может изменяться в зависимости от темпе­ратуры окружающей среды и глубины. Сильное течение или волны способны вызывать несанкционированную подачу воздуха увели


чив внешнее давление на мембрану. Несмотря на все эти обстоя­тельства, "сухопутные" величины сопротивления вдоха и выдоха остаются важной характеристикой его рабочих качеств и непре­менно должны указываться в технической документации легочного автомата.

Легочник обязательно должен обладать системой принудитель­ной подачи воздуха. В подавляющем большинстве случаев, в середи­не передней поверхности легочника (рис. 2.12) имеется кнопка, на­жатие на которую прогибает мембрану и открывает клапан вдоха. После нажатия кнопка возвращается на место пружиной. Принуди­тельная подача воздуха позволяет очищать воздушную камеру лего­чника от попавшей внутрь воды без выдоха, напрямую используя воздух из аппарата.

Так устроены наиболее простые модели легочных автоматов, удобные и надежные в эксплуатации и проверенные более чем 40-летним сроком применения. Однако конструкторская мысль не стояла на месте все это время, и с тех пор, появилось множество тех­нических решений, делающих легочные автоматы более комфорт­ными и безопасными. Основные усилия конструкторов были напра­влены на уменьшение сопротивления вдоху и выдоху, облегчение ре­гулировки этих параметров подводником, создание специальных не­замерзающих моделей. Помимо этого, разработано огромное коли­чество мелких приспособлений и хитростей, облегчающих эксплуа­тацию легочников. Рассмотрим наиболее часто встречающиеся ва­рианты современных легочных автоматов.

Материалы

Корпус большинства легочников выполнен из пластика, хотя есть и металлические модели. Передняя поверхность некоторых новей­ших образцов резиновая, что позволяет обходится без кнопки при­нудительной подачи воздуха — достаточно нажать в любом месте на мягкую переднюю поверхность легочного автомата.

Мягкие детали — мембрана, загубник, клапаны выдоха, — в сов­ременных моделях, как правило, изготовлены из силикона. Этот ма­териал имеет ряд преимуществ перед резиной: он мягче, эластичнее и — вместе с тем — долговечнее. Но и легочники с резиновыми дета­лями достаточно удобны. Средняя часть мембраны, соприкасающая­ся с рычажком, обязательно укреплена металлической или пластико­вой пластинкой.

Вход для воздуха среднего давления и составные элементы клапа­на вдоха выполняются из нержавеющих металлических сплавов. В некоторых моделях, специально приспособленных к погружению в холодной воде, элементы подвижных узлов изготавливаются из твер­дых и прочных водоотталкивающих пластмасс — во избежание об­разования наледи на трущихся поверхностях.

Остальные составные части легочника (кнопка принудительной подачи воздуха, регулировочные приспособления и т.д.) могут вы­полняться как из металла, так и из пластика. Поточные и противоточные (прямого и обратного действия) клапаны вдоха

Подавляющее большинство современных производителей под­водного снаряжения выпускает легочные автоматы с клапанами вдо­ха поточного типа. Это позволяет использовать редукторы без специальных предохранительных клапанов — повышение среднего давле­ния в системе вызывает открывание клапана вдоха легочного авто­мата, который и выпускает избыточный воздух (см. ниже). Отечест­венная промышленность производит легочные автоматы с клапана­ми вдоха противоточного типа. Их преимущество в уменьшении уси­лия вдоха при падении среднего давления, препятствующем открыванию клапана.


Сбалансированные и несбалансированные легочные автоматы

Если редуктор регулятора несбалансированный, среднее давле­ние постепенно уменьшается по мере падения высокого, если сба­лансированный — среднее давление будет постоянно при высоком, превышающем 20 — 30 атм., ниже этой величины — начнет посте­пенно уменьшаться. Когда давление в баллонах опускается ниже установочного давления редуктора, среднее давление, естественно, также начинает падать независимо от конструкции редуктора. Как в поточном, так и в противоточном клапанах величина среднего да­вления воздуха влияет на открывание клапана вдоха: в первом слу­чае — помогая ему, во втором — препятствуя. Понижение среднего давления помешает клапану открыться — а значит увеличит сопро­тивление на вдохе — в первом случае и, наоборот, облегчит откры­вание клапана во втором. Сбалансированные конструкции клапа­нов делают сопротивление вдоха практически независимым от из­менения среднего давления. По очевидным причинам это особенно актуально для поточных легочников. Наиболее распространенное техническое решение балансировки легочного автомата — введе­ние дополнительной поверхности, на которую оказывает действие среднее давление. Как Вы помните, подобное же решение исполь­зуется для балансировки редукторов и подробно обсуждается в гла­ве 2.5.

Уменьшение сопротивления вдоху

Сбалансированный легочник при уменьшении запаса воздуха в баллонах исключает рост сопротивления вдоху, но не влияет на эту величину саму по себе. Сопротивление вдоха состоит из начального усилия, необходимого для открывания клапана, и поддерживающе­го усилия, необходимого для сохранения клапана в открытом поло­жении. Для простых легочников, подобных изображенному на рис. 2.12, эти величины практически равны, а график изменения ды­хательного усилия от времени показан на рис. 2.14 А.

Множество технических решений, снижающих сопротивление вдоху, можно разделить на две группы: уменьшающие поддержива­ющее усилие и уменьшающие усилие вдоха в целом. Поддерживаю­щее усилие по времени в несколько раз продолжительнее начально­го, поэтому поиск технических решений, уменьшающих первое, бо­лее перспективен и актуален.

Наиболее распространенный вариант уменьшения поддержива­ющего усилия — использование эффекта инжектирования воздуха. Из закона Эйлера — Бернулли следует, что чем выше скорость потока газа, тем ниже его давление. В часы пик в метро самая большая дав­ка ожидает нас при входе на эскалатор, в самом начале сужения, а на самом эскалаторе, где развивается максимальная скорость потока — давление со стороны окружающих становится минимальным. Самое начало сужения в строгом понимании — это и есть самое широкое место, где давление максимально. Последнее утверждение спорно в применении к метрополитену, но ведь человеческий поток и не дол­жен строго подчиняться законом газовой динамики. Итак, если воз­дух выходит из клапана вдоха через узкое сопло с большой скоро­стью, давление в нем тем ниже, чем выше скорость потока. Обратим­ся к рис. 2.15 (общая схема эффекта). В результате усилия вдоха в воздушной камере легочника развивается пониженное давление, не


обходимое для открывания клапана. Получивший свободу воздух следует по трубке и через небольшое отверстие — сопло — вырыва­ется в воздушную камеру. Сопло направлено прямо на выход из ле­гочника и воздух "вдувается" в рот. Давление воздуха на выходе из сопла падает ниже давления в камере легочника за счет скорости по­тока. Образовавшееся разрежение в потоке вызывает уменьшение давления во всей камере легочника и поддерживает мембрану в во­гнутом состоянии, даже если усилие вдоха значительно уменьшится. Таким образом, клапан будет поддерживаться в открытом состоянии за счет самого воздушного потока.

В некоторых современных конструкциях легочников эффект инжектирования настолько силен, что усилие необходимо лишь для на­чальной фазы вдоха, а дальше воздух как будто сам "закачивается" в ваши легкие. Как только вы заканчиваете движение вдоха, скорость потока уменьшается, давление в воздушной камере возрастает и мембрана возвращается на свое место — клапан закрывается. Возмо­жные варианты зависимости усилия вдоха от времени для легочни­ков с инжекцией воздуха приведены на графике (рис. 2.14 Б). Как ви­дите, общая нагрузка по сравнению с диаграммой на рис. 2.14 А сни­жается в несколько раз, а значит — в несколько раз уменьшается ус­талость мышц, участвующих в дыхании подводника.