Смекни!
smekni.com

Физика и физиология 4 (стр. 13 из 58)

Применение байпасных (обводных) трубок


Строго говоря, это еще одно конструкторское решение использо­вания эффекта направленного воздушного потока. Подвижная пла­стинка (рис 2.16) меняет свое положение при каждом вдохе и выдо­хе. Во время вдоха за ней — в воздушной камере редуктора — созда­ется разрежение, поддерживающее мембрану в вогнутом состоянии.

Использование пилотажного клапана

Для уменьшения общего сопротивления вдоху используется кон­струкция с дополнительным клапаном, который называется регули­рующим (пилотажным). Рассмотрим ее принципиальную схему (рис. 2.17). Устройство обычного клапана вдоха усложняется введе­нием дополнительного изолированного объема (вокруг основного клапана) который соединен с камерой вдоха дополнительным клапа­ном меньшего размера — он и есть регулирующий. Основной клапан имеет не совсем обычную конструкцию: он "дырявый", т.е. в нем просверлено узенькое отверстие —дюза, через нее дополнительный объем сообщается с системой среднего давления. Регулирующий клапан открывается посредством рычага от мембраны, как обычный клапан в обычном легочнике. Основной клапан подчиняется исклю­чительно разнице давлений.

Итак, оба клапана закрыты, в дополнительном объеме — воздух под средним давлением. Когда за счет усилия вдоха понижается дав­ление в воздушной камере легочника, прогиб мембраны открывает пилотируемый клапан. Воздух из дополнительного объема выходит быстрее, чем поступает туда через дюзу основного клапана, и давле­ние в дополнительном объеме падает. Это приводит к открыванию основного клапана, сечение которого в несколько раз превосходит сечение регулирующего. Когда мембрана возвращается на место, ре­гулирующий клапан закрывается, через дюзу давление в дополнительном объеме выравнивается со средним давлением и основной клапан возвращается в исходное положение.

Каков смысл этого механизма? Чем меньше размер клапана, тем меньшее усилие, чтобы его открыть, и тем меньшее количество воз­духа может через него пройти. Пилотируемый клапан весьма мал и открывается минимальным усилием, количество же проходящего че­рез него воздуха недостаточно для дыхания, но достаточно, чтобы от­крыть основной клапан, который и обеспечивает нас необходимым количеством воздуха. Подобный механизм весьма сложен и имеет некоторую инерцию, но значительно уменьшает как начальное, так и поддерживающее усилие вдоха.

Внешние регулировки подачи воздуха

Дают возможность изменять сопротивление вдоха, не разбирая легочный автомат. Современные конструкции легочников могут быть снабжены двумя различными системами внешней регулировки подачи воздуха.

Регулировка начального усилия

Позволяет плавно изменять его как на суше, так и под водой. Ес­ли легочник, оказавшийся у Вас в руках, имеет вращающуюся голов­ку со стороны, противоположной входу шланга среднего давления — это означает, что Вы можете отрегулировать величину начально­го усилия вдоха так, как пожелаете (естественно, в пределах некое­го диапазона). Механизм регулировочного устройства весьма прост:

закручивая вращающуюся головку (как правило, по часовой стрел­ке) сжимаете закрывающую пружину клапана вдоха, тем самым увеличивая сопротивление вдоха; откручивая головку, ослабляете пружину, облегчая открывание клапана и уменьшая сопротивление вдоха.

Регулировка поддерживающего усилия

Как правило, имеется в легочных автоматах, использующих эф­фект инжектирования. В воздушной камере, на пути воздушного по­тока, размещается заслонка, приводимая в движение переключате­лем на внешней поверхности легочника. Переключатель и заслонка имеют два положения: в одном заслонка параллельна потоку возду­ха, в другом — перпендикулярна (фото 2.9 В). Первое положение — для пребывания под водой (dive), эффект инжектирования при этом действует в полной мере, облегчая вдох подводника. Второе положе­ние — для нахождения на поверхности (pre — dive); эффект инжекти­рования в этом случае "выключен", так как заслонка тормозит поток воздуха.

Зачем нужен такой переключатель? Находясь на поверхности, ча­сто бывает необходимым вынуть легочник изо рта — для переключе­ния на дыхательную трубку, снятия аппарата, разговора с партнерами или страхующими. Любой легочник, упав в воду в положении загубником вверх, за счет увеличения давления в водной камере нач­нет самопроизвольно стравливать воздух. При наличии инжекторного механизма к такому стравливанию больше подойдет слово "фонтанирование". Чтобы избежать этой неприятности, Вы переводите переключатель в поверхностное положение (pre—dive). Перед по­гружением, окончательно взяв загубник в рот, Вы ставите рычажок в подводное (dive) положение и начинаете спуск, наслаждаясь свобод­ной работой легочного автомата.

Для комфортности погружений в холодной воде немаловажную роль играет форма внешних регулировочных приспособлений: дале­ко не всегда они удобны для переключения рукой одетой в толстую перчатку. Если Вы не уверены, что будете пользоваться легочным ав­томатом исключительно в теплой воде, то выбирая для себя регуля­тор, наденьте перчатки толщиной около 5 мм и попробуйте в них пе­реключить режим и регулировать сопротивление вдоху.

Клапаны выдоха

Основная его задача — стравливание воздуха из легочного авто­мата при увеличении давления в воздушной камере. Чем меньше сопротивления выдоха — усилие необходимое для открывание кла­пана — тем легче выдыхать. В подавляющем большинстве легочных автоматов клапан выдоха выполнен в виде резиновой тарелочки, прикрепленной своей серединой к наружной поверхности корпуса легочника. Корпус под тарелкой пронизан расположенными по кругу отверстиями, ведущими в воздушную камеру легочного авто­мата, края тарелки прилегают к поверхности корпуса, играющей роль седла клапана. При равенстве давлений внутри и снаружи воз­душной камеры собственная упругость тарелки прижимает ее к седлообразующей поверхности корпуса. Создаваемое силой выдоха избыточное давление внутри воздушной камеры приподнимает клапан, выпуская воздух. С одной стороны, чем больше площадь по­верхности тарелки клапана и чем мягче ее материал, тем меньше будет сопротивление выдоху. С другой стороны, материал должен обладать упругостью, достаточной для закрывания клапана, а раз­мер последнего ограничен размером и конструкцией легочника. Системы выдоха легочных автоматов различаются по следующим признакам.

1. Количество и размер клапанов. Большинство легочных автома­тов имеет один клапан выдоха диаметром около 30 мм, некото­рые — два, но меньшего размера.

2. Материалом тарелки клапана может быть резина или силикон. Последний преобладает у современных моделей.

3. Традиционное расположение системы выдоха — в нижней час­ти задней поверхности легочного автомата. Легочник D—400 фирмы Scubapro имеет клапан выдоха, расположенный в цент­ре мембраны. Седлом клапана в этом случае служит силиконовая поверхность мембраны. При наиболее распространенных положениях тела подводника клапан выдоха подобной конст­рукции располагается в самой нижней части легочника, что способствует полному удалению воды из воздушной камеры при выдохе.

Приспособления, уменьшающие вероятность замерзания легочного автомата

Замерзание легочников происходит по тем же причинам, что и за­мерзание редуктора. Какой из узлов в большей степени ему подвер­жен? С одной стороны, воздушная камера легочника все время увла­жняется за счет выдоха, что, очевидно, повышает вероятность замер­зания. Вода также попадает в легочный автомат при подключениях и отключения от аппарата, выполняемых в воде. С другой стороны, легочник все время подогревается теплом выдыхаемого воздуха и имеет управляющий элемент в виде мембраны, а мембранный меха­низм, как Вы помните, менее подвержен замерзанию, чем поршне­вой. Таким образом, борьба с обледенением легочных автоматов — актуальная техническая задача, для решения которой используются различные способы. Рассмотрим некоторые из них на примере лего­чного автомата "ARCTIC" — одной из новейших моделей француз­ской фирмы "La Spirotechnique" — специально приспособленного для работы в холодной воде (фото 2.9 Г). Его конструкция отличается следующими особенностями:

1. Рычаг расположен с противоположной от воздушного входа стороны. Наибольшему охлаждению потоком расширяющего­ся воздуха (вспомним замерзание редукторов) подвергаются седло и подушка клапана вдоха. В большинстве легочников именно в этом месте находится подвижное соединение рычага. Перенесение его на противоположную сторону корпуса значи­тельно уменьшает вероятность заклинивания рычага в резуль­тате образования наледи.

2. Пластиковая муфта ограничивает теплообмен между поршнем клапана и рычагом, уменьшая охлаждение последнего.

3. Все подвижные металлические детали имеют водоотталкиваю­щее покрытие, препятствующее образованию наледи.

4. Специальная система обеспечивает теплообмен между охла­ждаемыми расширяющимся воздухом деталями легочного ав­томата и окружающей водой, температура которой, разуме­ется, выше точки замерзания. Эта система представлена на­ружными радиаторами, соединенными с клапаном вдоха вставками из материала, обладающего высокой теплопровод­ностью.