Смекни!
smekni.com

Физика и физиология 4 (стр. 9 из 58)

У отечественных аквалангов резервный механизм иного устрой­ства: в трубке высокого давления, соединяющей два баллона, распо­ложен клапан, перекрывающий подачу воздуха из правого баллона, когда давление в нем падает примерно до 60—ти атм. Когда иссяк­нет воздух в левом баллоне, необходимо открыть резервный вен­тиль, выпускающий остатки воздуха из правого баллона. Открывание резерва в такой конструкции сопровождается характерным звуком, слышным как на воздухе, так и в воде — звуком перепуска воздуха из правого баллона в левый до выравнивания давления ме­жду ними. Таким образом, после открытия резерва в обоих баллонах остается приблизительно по 30 атм. Вентили резерва в отечествен­ных баллонах имеют такой же рабочий ход, как и вентили основной подачи — немногим более одного оборота — и левую резьбу, т.е. в отличие от вентилей основной подачи открываются по часовой стрелке. В широко распространенных аппаратах АВМ — 5 и АВМ — 7 вентиль резерва приводится в действие тросиком, намотанным на маховик. Тросик следует вниз вдоль баллона внутри защитного ко­жуха и заканчивается грушевидной ручкой с пружинными фиксато­рами (фото 2.7 А). Для открывания резерва необходимо нажатием на фиксаторы освободить ручку и потянуть ее вниз до отказа. Такой механизм ввиду своей сложности требует тщательного регулярного ухода в виде переборки и смазки. В аппаратах серии "Подводник" применено другое конструкционное решение: акваланг "перевер­нут", т.е. его нормальное рабочее положение — вентилями вниз;

вентиль резерва размещен под правой рукой подводника и открыва­ется без каких-либо дополнительных механизмов. Очевидное не­удобство такой конструкции — необходимость использования бо­лее длинного шланга, соединяющего редуктор с легочником, и пере­ворачивания баллона при каждом его надевании.

Насколько нужен резервный запаса воздуха? Его наличие обяза­тельно при отсутствии выносного манометра, показывающего дав­ление в баллонах. Если же такой манометр есть, механизм резерва становится дублирующим устройством, информирующим подвод­ника о том, что воздух на исходе. Вы можете залюбоваться красота­ми подводного мира и забыть вовремя взглянуть на манометр, но Вы не можете не заметить окончания основного запаса воздуха. С дру­гой стороны — любой механизм занимает объем, имеет вес и требу­ет ухода. Сегодня во всем мире налицо тенденция к отказу от меха­низма резерва, по крайней мере при погружениях в обычных усло­виях.

Крепление баллонов

В подавляющем большинстве случаев акваланги надеваются за спину как рюкзаки. Существуют и другие варианты: например, при подводном скоростном плавании или подводном ориентировании единственный баллон удерживается спортсменом за вентиль впере­ди на вытянутых руках. При креплении баллона за спиной возможны три разновидности конструкции:

1. Один или два баллона крепятся с помощью ремня (иногда — двух ремней) к жилету—компенсатору. Это наиболее распро­страненный в мировой практике способ крепления. В случае двухбаллонного блока часто используется пара крепежных бол­тов. Подробнее эти механизмы разбираются в главе, посвящен­ной компенсаторам плавучести,

2. Один или два баллона таким же образом крепят к специальной анатомической спинке, снабженной плечевыми и поясными ремнями.

3. Ремни крепятся к металлическим хомутам, охватывающим бал­лонный блок. Такой способ крепления используется в большин­стве отечественных аквалангов. У них, как правило, кроме пле­чевых и поясных ремней имеются брасовые — идущие между ног подводника. Назначение брасового ремня — предотвратить смещение акваланга наверх; неудобство — необходимость предварительного расстегивания при снятии или аварийном сбрасывании грузового пояса. Хорошо подогнанный по вашей талии поясной ремень делает брасовый необязательным. Сов­ременное любительское снаряжение международного стандар­та, как правило, не предусматривает его наличие.

Глава 2.4. Регулятор

В применении к аквалангу термин "регулятор" появился в лекси­ке отечественных подводников совсем недавно. До того в русском языке не существовало единого общепринятого термина для редук­тора, легочного автомата и соединяющего их шланга. Это было дос­таточно неудобно, что и вызвало быстрое заполнение пустого места в языке, как только широкому кругу пользователей в России стало доступно иностранное снаряжение и соответствующая литература. Английское "regulator" легко русифицировалось и прижилось как в устной речи, так и в литературе.

Основная задача регулятора — понизить высокое давление пода­ющегося из баллонов воздуха до давления окружающей среды и обеспечить подводнику возможность свободного вдоха и выдоха.

Допустимо техническое решение, при котором это будет происхо­дить в одном узле и в один этап. Однако наиболее удобным оказа­лось двухступенчатое уменьшение давления. На первом этапе оно снижается до уровня, превышающего давление окружающей среды на 5— 10 атм. Это происходит в узле, именуемом редуктором (first stage). Далее воздух подается в легочный автомат (second stage), где его давление выравнивается с давлением окружающей среды. Из легочного автомата воздух подается на вдох, и через него же проис­ходит выдох.

Первые акваланги имели так называемые совмещенные регулято­ры: редуктор и легочник располагались в едином корпусе непосредст­венно на выходе из вентильного механизма аппарата. С одной сторо­ны ко рту шел гофрированный шланг вдоха, входящий в мундштуч­ную коробку с загубником, с другой — из мундштучной коробки вы­ходил шланг выдоха, следующий за спину подводника в легочный ав­томат, где заканчивался клапаном выдоха. Так устроен первый отече­ственный серийный акваланг — АВМ— 1М. При горизонтальном по­ложении такого аппарата легочный автомат располагается выше лег­ких пловца. Давление воздуха, выходящего из легочника, равно дав­лению окружающей среды, а, значит, немного меньше давления дей­ствующего на легкие. Результат — затрудненный вдох при плавании. Если в таком аппарате перевернуться на спину — воздух все время будет подаваться на вдох. Гораздо удобнее оказалось использовать разнесенные системы, в которых редуктор крепится на вентильный механизм акваланга, а легочный автомат находится непосредственно около рта подводника. Редуктор и легочник в этом случае соединены гибким шлангом промежуточного давления. Сегодня именно так уст­роены все регуляторы, выпускаемые промышленностью для широко­го применения. Они называются "двухступенчатые регуляторы с раз­несенными ступенями редуцирования", и именно с их устройством и разнообразием мы знакомим Вас в настоящей книге.

Как быть левше? Совет начинающим подводникам

В течение нескольких десятилетий вся мировая промышленность выпускала регуляторы "под правую руку": шланг низкого давления обходит тело подводника и входит в легочник с правой стороны, что делает удобным выполнение всех манипуляций с легочником именно правой рукой. С изобретением компенсатора плавучести (глава 2.8) в левую руку подводника был вложен инфлятор — деталь компенсато­ра, на которой расположены кнопки регулировки плавучести. Сов­ременная промышленность, ориентированная на максимальное удобство для пользователей, выпускает инвертируемые легочники и компенсаторы, которые могут собираться, как в обычном варианте, так и в зеркальном: шланг к легочнику — слева, инфлятор компенса­тора — справа. Вопрос в том, насколько это нужно. Когда Вы овладе­ваете техникой плавания с аквалангом, ваши руки привыкают к вы­полнению некоторых стандартных действий с легочником и инфлятором компенсатора. Трудно сказать, на какую руку ложится более сложная, требующая лучшей координации нагрузка. Если Вы левша, это совсем не значит, что необходимые навыки в стандартном снаря­жении будут даваться Вам тяжелее, чем в "зеркальном". Привыкнув к "леворукому" снаряжению, Вам будет сложнее пользоваться стан­дартным. Если Вы абсолютно уверены, что всегда будете иметь при себе собственный инвертируемый комплект и никогда не окажетесь перед необходимостью воспользоваться каким — либо другим редук­тором или компенсатором — учитесь на том снаряжении, какое вам больше нравится. Если Вы допускаете иные ситуации — с самого на­чала привыкайте к стандартному варианту. Еще раз повторим, что мы не видим в нем каких-либо неудобств для левшей.

Глава 2.5. Редуктор

Основная задача редуктора — уменьшить давление воздуха, вы­ходящего из баллонов, до давления, превышающего давление окру­жающей среды на некоторую величину, в пределах 5—10 атм. (как правило, 8 — 9).

Базовые принципы работы различных моделей редукторов мало отличаются друг от друга. Рассмотрим наиболее простую конструк­цию. Редуктор, схема которого изображена на рисунке 2.6, имеет три камеры, подвижный поршень и пружину. Форма подвижного поршня такова, что его торцевые поверхности имеют различную площадь. По­верхность меньшей площади снабжена прокладкой из полимерного материала и при опускании поршня вниз (см. рисунок) закрывает со­бой отверстие, через которое поступает воздух из баллона. Эта поверхность именуется подушкой клапана, а закрываемое ею отверстие — седлом клапана. Вместе они образуют клапан редуктора. Поверх­ность большей площади обращена в верхнюю камеру редуктора. Вну­три поршня проходит канал, соединяющий нижнюю и верхние каме­ры редуктора. Средняя камера сообщается отверстием с окружаю­щей средой. Пока баллонный вентиль закрыт, пружина удерживает поршень в верхнем положении, при котором клапан редуктора от­крыт. При открывании вентиля воздух под высоким давлением устре­мляется через открытый клапан в нижнюю камеру редуктора, из кото­рой по каналу в поршне проходит в верхнюю камеру. Давление в обе­их камерах нарастает практически одновременно. Давление в верх­ней камере начинает действовать на поршень с возрастающей силой.