У отечественных аквалангов резервный механизм иного устройства: в трубке высокого давления, соединяющей два баллона, расположен клапан, перекрывающий подачу воздуха из правого баллона, когда давление в нем падает примерно до 60—ти атм. Когда иссякнет воздух в левом баллоне, необходимо открыть резервный вентиль, выпускающий остатки воздуха из правого баллона. Открывание резерва в такой конструкции сопровождается характерным звуком, слышным как на воздухе, так и в воде — звуком перепуска воздуха из правого баллона в левый до выравнивания давления между ними. Таким образом, после открытия резерва в обоих баллонах остается приблизительно по 30 атм. Вентили резерва в отечественных баллонах имеют такой же рабочий ход, как и вентили основной подачи — немногим более одного оборота — и левую резьбу, т.е. в отличие от вентилей основной подачи открываются по часовой стрелке. В широко распространенных аппаратах АВМ — 5 и АВМ — 7 вентиль резерва приводится в действие тросиком, намотанным на маховик. Тросик следует вниз вдоль баллона внутри защитного кожуха и заканчивается грушевидной ручкой с пружинными фиксаторами (фото 2.7 А). Для открывания резерва необходимо нажатием на фиксаторы освободить ручку и потянуть ее вниз до отказа. Такой механизм ввиду своей сложности требует тщательного регулярного ухода в виде переборки и смазки. В аппаратах серии "Подводник" применено другое конструкционное решение: акваланг "перевернут", т.е. его нормальное рабочее положение — вентилями вниз;
вентиль резерва размещен под правой рукой подводника и открывается без каких-либо дополнительных механизмов. Очевидное неудобство такой конструкции — необходимость использования более длинного шланга, соединяющего редуктор с легочником, и переворачивания баллона при каждом его надевании.
Насколько нужен резервный запаса воздуха? Его наличие обязательно при отсутствии выносного манометра, показывающего давление в баллонах. Если же такой манометр есть, механизм резерва становится дублирующим устройством, информирующим подводника о том, что воздух на исходе. Вы можете залюбоваться красотами подводного мира и забыть вовремя взглянуть на манометр, но Вы не можете не заметить окончания основного запаса воздуха. С другой стороны — любой механизм занимает объем, имеет вес и требует ухода. Сегодня во всем мире налицо тенденция к отказу от механизма резерва, по крайней мере при погружениях в обычных условиях.
Крепление баллонов
В подавляющем большинстве случаев акваланги надеваются за спину как рюкзаки. Существуют и другие варианты: например, при подводном скоростном плавании или подводном ориентировании единственный баллон удерживается спортсменом за вентиль впереди на вытянутых руках. При креплении баллона за спиной возможны три разновидности конструкции:
1. Один или два баллона крепятся с помощью ремня (иногда — двух ремней) к жилету—компенсатору. Это наиболее распространенный в мировой практике способ крепления. В случае двухбаллонного блока часто используется пара крепежных болтов. Подробнее эти механизмы разбираются в главе, посвященной компенсаторам плавучести,
2. Один или два баллона таким же образом крепят к специальной анатомической спинке, снабженной плечевыми и поясными ремнями.
3. Ремни крепятся к металлическим хомутам, охватывающим баллонный блок. Такой способ крепления используется в большинстве отечественных аквалангов. У них, как правило, кроме плечевых и поясных ремней имеются брасовые — идущие между ног подводника. Назначение брасового ремня — предотвратить смещение акваланга наверх; неудобство — необходимость предварительного расстегивания при снятии или аварийном сбрасывании грузового пояса. Хорошо подогнанный по вашей талии поясной ремень делает брасовый необязательным. Современное любительское снаряжение международного стандарта, как правило, не предусматривает его наличие.
Глава 2.4. Регулятор
В применении к аквалангу термин "регулятор" появился в лексике отечественных подводников совсем недавно. До того в русском языке не существовало единого общепринятого термина для редуктора, легочного автомата и соединяющего их шланга. Это было достаточно неудобно, что и вызвало быстрое заполнение пустого места в языке, как только широкому кругу пользователей в России стало доступно иностранное снаряжение и соответствующая литература. Английское "regulator" легко русифицировалось и прижилось как в устной речи, так и в литературе.
Основная задача регулятора — понизить высокое давление подающегося из баллонов воздуха до давления окружающей среды и обеспечить подводнику возможность свободного вдоха и выдоха.
Допустимо техническое решение, при котором это будет происходить в одном узле и в один этап. Однако наиболее удобным оказалось двухступенчатое уменьшение давления. На первом этапе оно снижается до уровня, превышающего давление окружающей среды на 5— 10 атм. Это происходит в узле, именуемом редуктором (first stage). Далее воздух подается в легочный автомат (second stage), где его давление выравнивается с давлением окружающей среды. Из легочного автомата воздух подается на вдох, и через него же происходит выдох.
Первые акваланги имели так называемые совмещенные регуляторы: редуктор и легочник располагались в едином корпусе непосредственно на выходе из вентильного механизма аппарата. С одной стороны ко рту шел гофрированный шланг вдоха, входящий в мундштучную коробку с загубником, с другой — из мундштучной коробки выходил шланг выдоха, следующий за спину подводника в легочный автомат, где заканчивался клапаном выдоха. Так устроен первый отечественный серийный акваланг — АВМ— 1М. При горизонтальном положении такого аппарата легочный автомат располагается выше легких пловца. Давление воздуха, выходящего из легочника, равно давлению окружающей среды, а, значит, немного меньше давления действующего на легкие. Результат — затрудненный вдох при плавании. Если в таком аппарате перевернуться на спину — воздух все время будет подаваться на вдох. Гораздо удобнее оказалось использовать разнесенные системы, в которых редуктор крепится на вентильный механизм акваланга, а легочный автомат находится непосредственно около рта подводника. Редуктор и легочник в этом случае соединены гибким шлангом промежуточного давления. Сегодня именно так устроены все регуляторы, выпускаемые промышленностью для широкого применения. Они называются "двухступенчатые регуляторы с разнесенными ступенями редуцирования", и именно с их устройством и разнообразием мы знакомим Вас в настоящей книге.
Как быть левше? Совет начинающим подводникам
В течение нескольких десятилетий вся мировая промышленность выпускала регуляторы "под правую руку": шланг низкого давления обходит тело подводника и входит в легочник с правой стороны, что делает удобным выполнение всех манипуляций с легочником именно правой рукой. С изобретением компенсатора плавучести (глава 2.8) в левую руку подводника был вложен инфлятор — деталь компенсатора, на которой расположены кнопки регулировки плавучести. Современная промышленность, ориентированная на максимальное удобство для пользователей, выпускает инвертируемые легочники и компенсаторы, которые могут собираться, как в обычном варианте, так и в зеркальном: шланг к легочнику — слева, инфлятор компенсатора — справа. Вопрос в том, насколько это нужно. Когда Вы овладеваете техникой плавания с аквалангом, ваши руки привыкают к выполнению некоторых стандартных действий с легочником и инфлятором компенсатора. Трудно сказать, на какую руку ложится более сложная, требующая лучшей координации нагрузка. Если Вы левша, это совсем не значит, что необходимые навыки в стандартном снаряжении будут даваться Вам тяжелее, чем в "зеркальном". Привыкнув к "леворукому" снаряжению, Вам будет сложнее пользоваться стандартным. Если Вы абсолютно уверены, что всегда будете иметь при себе собственный инвертируемый комплект и никогда не окажетесь перед необходимостью воспользоваться каким — либо другим редуктором или компенсатором — учитесь на том снаряжении, какое вам больше нравится. Если Вы допускаете иные ситуации — с самого начала привыкайте к стандартному варианту. Еще раз повторим, что мы не видим в нем каких-либо неудобств для левшей.
Глава 2.5. Редуктор
Основная задача редуктора — уменьшить давление воздуха, выходящего из баллонов, до давления, превышающего давление окружающей среды на некоторую величину, в пределах 5—10 атм. (как правило, 8 — 9).
Базовые принципы работы различных моделей редукторов мало отличаются друг от друга. Рассмотрим наиболее простую конструкцию. Редуктор, схема которого изображена на рисунке 2.6, имеет три камеры, подвижный поршень и пружину. Форма подвижного поршня такова, что его торцевые поверхности имеют различную площадь. Поверхность меньшей площади снабжена прокладкой из полимерного материала и при опускании поршня вниз (см. рисунок) закрывает собой отверстие, через которое поступает воздух из баллона. Эта поверхность именуется подушкой клапана, а закрываемое ею отверстие — седлом клапана. Вместе они образуют клапан редуктора. Поверхность большей площади обращена в верхнюю камеру редуктора. Внутри поршня проходит канал, соединяющий нижнюю и верхние камеры редуктора. Средняя камера сообщается отверстием с окружающей средой. Пока баллонный вентиль закрыт, пружина удерживает поршень в верхнем положении, при котором клапан редуктора открыт. При открывании вентиля воздух под высоким давлением устремляется через открытый клапан в нижнюю камеру редуктора, из которой по каналу в поршне проходит в верхнюю камеру. Давление в обеих камерах нарастает практически одновременно. Давление в верхней камере начинает действовать на поршень с возрастающей силой.