Смекни!
smekni.com

по информационным технологиям в предметной области 4 интернет ресурсы в предметной области исследования 29 (стр. 2 из 6)

В пакете SPSS предусмотрена обработка как количественных, так и качественных статистических переменных. «Существуют три основных типа данных, которые принято упорядочивать по возрастанию уровня измерения: номинальный, порядковый, количественный. Выбор методов статистического анализа может оказаться ограниченным, если данные имеют низкий уровень измерения. Поэтому прежде, чем Вы начнёте их собирать, важно определить, какие данные потребуются для определения того или иного метода».[5, c.12] От того, к какому типу относится переменная и какое явление она отражает, зависят возможные операции анализа, которые к ним применяются. В диалоговом окне базы описания переменных можно задать один из типов: Numeric, Comma, Dot, Scientific notation, Date, Dollar, Custom currency, String.


Рисунок 2.1 – Редактор переменных пакета SPSS

Чаще всего, те переменные, которые описывают содержание знаний, представлений, поведения можно описать только с помощью переменной типа String, для которой очень ограничен набор производимых операций. Ей соответствует номинальная шкала, переменные которой не могут быть подвержены большинству видов статистического анализа из-за того, что не соответствуют числовым значениям. Для того, чтобы расширить возможности анализа данных, переменные часто сводятся к порядковой шкале (и на вопрос о частоте просмотра той или иной телепередачи можно давать ответы: «редко»; «скорее редко, чем часто»; «скорее часто, чем редко»; «часто» – которые могут быть закодированы числами от 1 до 4, после чего могут быть подвергнуты количественному анализу). Другой способ обработки данных подобного рода – приведение номинальной переменной к бинарной шкале (где варианты ответов на вопрос «Смотрели ли Вы ту или иную передачу вчера?» - а он часто используется в исследовании телесмотрения методом day-after-call – могут звучать однозначно «да» или «нет», и их можно закодировать числами 0 и 1).

Кроме обозначения типа переменной при вводе её в базу SPSS используются такие параметры, как Name, Width, Decimals – обозначающие общее количество знаков и количество знаков после запятой, Lable, Values – содержащий описание переменной, Missing – задающий способ обработки пропусков данных, Columns, Align – задающие вид и Measure – обозначающий тип шкалы.

Среди методов сравнения и сопоставления различных переменных, применяемых программой, стоит выделить таблицы сопряжённости, регрессионный анализ и факторный анализ. При этом используется анализ коррелиций между различными переменными, вычисляются подходящие в данном случае коэффициенты корреляции, а также проверяются гипотезы о связи. Подробнее все эти методы будут рассмотрены ниже. Однако стоит отметить, что для переменных различных типов и для различных шкал существуют ограничения в применении этих методов сравнения. Проблема состоит в том, что для номинальных переменных среди всех методов обработки данных в плане установления зависимостей между ними доступен только метод анализа таблиц сопряжённости, а все остальные методы, позволяющие черпать более подробную информацию о характерах связи, могут применятся только к количественным переменным.

Таблицы сопряжённости предоставляют структурированную информацию, дающую наглядное представление о связи между переменными. «Существует несколько способов измерения статистических связей между переменными. Наиболее универсальным из них является анализ таблиц сопряжённости». [5, c.60] Таблицы сопряжённости формируются на основании массивов данных с помощью команды Descriptive statistic -> Crosstabs меню Analyze.

«Crosstabs получает таблицы сопряженности многомерных распределений и связей двух и более переменных. Рекомендуется использовать CROSSTABS для переменных с небольшим числом значений (обычно для неколичественных переменных), так как каждая комбинация значений соответствует новой клетке в таблице.

Таблицы сопряженности для пары переменных X и Y содержат частоты Nij, с которыми встретилось сочетание i-го значения X и j-го значения Y. Кроме того, в таблице обязательно присутствуют маргинальные частоты Ni.- равные сумме чисел Nijпо строке; N.j - сумме по столбцу (частоты i-го значения X и j-го значения Y, подсчитанные независимо) и N - общее число объектов.

Таблица, заполненная одними частотами Nij, обычно не имеет смысла, так как не проясняет должным образом взаимосвязи между переменными. Для исследования взаимосвязи необходимы статистики взаимосвязи переменных и статистики связи значений». [2, c.35]

В качестве примера исследования с помощью анализа таблиц сопряжённости можно привести исследование зависимости доверия к СМИ разной формы собственности и ценности уверенности для молодых людей. Анализ производится на основании данных исследования «Молодёжь Беларуси, какие мы?». Количество опрошенных девушек – 506 человек. Среди них студентки БГУ, БГУИР, БНТУ, ИСЗ и БУК.

Государственным газетам и журнвлам Total
0 1
Быть уверенным в себе 0 2 0 2
1 7 1 8
2 4 3 7
3 29 4 33
4 86 33 119
5 381 103 484
Total 509 144 653

Таблица 2.1 – Таблица сопряжённости между переменными «ценность уверенности» и «доверие к государственным газетам и журналам».

Value

Approx. Sig.

Nominal by Nominal

Phi

,104

,217

Cramer's V

,104

,217

N of Valid Cases

653

Таблица 2.2 – Проверка статистической значимости связи между переменными «ценность уверенности» и «доверие к государственным газетам и журналам».

негосуд. газеты и журналы Total
0 1
быть уверенным в себе 0 2 0 2
1 5 3 8
2 3 4 7
3 18 13 31
4 69 48 117
5 257 212 469
Total 354 280 634

Таблица 2.3 – Таблица сопряжённости между переменными «ценность уверенности» и «доверие к негосударственным газетам и журналам».

Value Approx. Sig.
Nominal by Nominal Phi ,068 ,709
Cramer's V ,068 ,709
N of Valid Cases 634

Таблица 2.4 – Проверка статистической значимости связи между переменными «ценность уверенности» и «доверие к негосударственным газетам и журналам».

Так, таблицы 2.1 и 2.3 показывают, какова частота совместного появления различных оценок важности ценности уверенности в себе и доверия государственным или негосударственным газетам и журналам, а таблицы 2.2 и 2.4 демонстрируют значения коэффициентов корреляции и предоставляют значения Approx. Sig., которое можно сравнить с задаваемым исследователем уровнем ошибки первого рода α и подтвердить или не подтвердить гипотезу о связи между двумя переменными. Если Approx. Sig. больше α, то гипотеза не подтверждается, что мы можем увидеть в данном случае при α=0,1.

Регрессионный анализ доступен для количественных переменных, относящихся к порядковой, интервальной или относительной шкале. Он позволяет не просто подтвердить связь между переменными, но и определить как измениться зависимая переменная при определённом изменении независимой. Результатом регрессионного анализа является уравнение регрессии вида y=ax+b.

Зависимость может быть разного рода: логарифмическая, экспоненциальная, линейная. Обрабатывая данные, SPSS предлагает значения коэффициентов для составления уравнения, а также проверяет статистическую значимость этих коэффициентов. Эти коэффициенты впоследствии применяются к переменной, логарифму от переменной или экспоненте от переменной. Это определяется по характеру размещения точек на координатной плоскости с помощью визуального анализа, доступного средствами программы. [4, c.846-847] Кроме определения характера связи, регрессионный анализ обладает очень важным прогностическим потенциалом, и оценить возможное значение зависимой переменной мы можем для любого предполагаемого значения независимой.

Например, по материалам исследования, рассмотренного ранее, можно составит уравнение регрессии для зависимости важности ценности сохранять здоровье от доверия к государственному телевидению, что может быть весьма актуальным для оценки действенности социальной рекламы на эту тему и государственных программ популяризации здорового образа жизни. В результате обработки значений этих переменных мы получаем таблицу следующего вида:

Model Unstandardized Coefficients Standardized Coefficients t Sig.
B Std. Error Beta
1 (Constant) 4,586 ,036 128,845 ,000
гос. телевидение ,134 ,088 ,060 1,525 ,128

a Dependent Variable: иметь возможность сохранять здоровье

Таблица 2.5

Где B - это значение коэффициента b, а Beta – значение коэффициента а. В данном случае при изменении доверия к государственному телевидению (х) можно следующим образом спрогнозировать важность ценности сохранить здоровье (у):