БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
кафедры аналитической химии
Каплин Алексей Валентинович
Руководители:
к.х.н. Винарский Владимир Афанасьевич
ассистент Шешко Сергей Михайлович
Минск – 2008 г.
1. Сравнение аналоговых и цифровых операций. 5
2. Прибор, управляемый микропроцессором. 6
3. Особенности хромато-масс-спектрометрии. 8
3.1. Подготовка прибора к работе. 9
3.2. Управление прибором и получение данных. 10
3.3. Обработка данных после анализа. 11
Интернет-ресурсы в предметной области исследования. 15
Презентация магистерской диссертации. 16
Приложение: Презентация магистерской дисертации. 19
ХМС | - | хромато-масс-спектрометр; |
ЦПУ | - | центральный микропроцессор; |
ГХ | - | газовая хроматография; |
МС | - | масс-спектрометр |
кафедры аналитической химии
Каплин Алексей Валентинович
Руководители:
к.х.н. Винарский Владимир Афанасьевич
ассистент Шешко Сергей Михайлович
Минск – 2008 г.
Введение
В последние несколько лет цены на компьютеры и сопутствующие устройства снизились настолько, что теперь стало возможным применение микропроцессоров для управления и анализа данных в каждом газовом хроматографе. Достоинства компьютерной обработки данных очевидны, однако для максимального извлечения пользы необходимо глубокое понимание принципов и возможностей компьютерных операций. Преимущества цифрового управления хроматографом и цифрового представления данных менее очевидны, так как эти операции более осязаемы для пользователя. Для рассмотрения преимуществ того и другого подхода необходимо разобраться в различии между аналоговым и цифровым управлением.
1. Сравнение аналоговых и цифровых операций.
Электрический выход газохроматографического детектора представляет собой напряжение, изменяющееся во времени. Это напряжение пропорционально некоторому физическому свойству, измеряемому детектором, например, току ионов, образующихся при ионизации элюируемого соединения. Ранние аналоговые устройства представляли этот сигнал графически в зависимости от времени на диаграммной ленте самописца после его фильтрации с помощью соответствующих электрических цепей, состоящих из сопротивлений и конденсаторов. Всю обработку данных - определение времени удерживания и площади пика - проводили вручную. Для управления аналоговыми приборами служили переключатели и кнопки на панели управления. Для проверки правильности установки условий анализа, например, температуры колонки, обычно предусматривался соответствующий измерительный прибор. Никакой постоянной регистрации задаваемых параметров не осуществлялось.
В цифровом приборе, вместо того чтобы оперировать с самими напряжениями, измеряемыми электрическими цепями, эти напряжения на определенном этапе выражают числом. В этом случае также необходимы электрические цепи для управления нагревателями, получения сигналов детекторов и управления другими параметрами, однако основные функции, такие, как управление прибором, сбор и обработка данных и их анализ осуществляются вычислительным устройством, которое принимает решения, основываясь на сравнении параметров, представленных в цифровом виде. Аналоговые приборы могут быть подключены к компьютеру таким образом, что сигнал детектора преобразуется в цифровую форму, удобную для дальнейшей обработки данных. Компьютеризация имеет много преимуществ как в управлении приборами, так и для сбора и обработки данных и их анализа.
2. Прибор, управляемый микропроцессором.
Газовый хроматограф фирмы Hewlett-Packard модели 5830А был первым компьютеризованным прибором, в котором все условия хромато-графического анализа вводились при помощи клавиатуры. На рис. 1 представлена архитектура системы управления данным прибором и показаны функции, контролируемые центральным микропроцессором. С ЦПУ непосредственно связаны память, таймер и операции ввода/вывода данных. Память включает постоянное запоминающее устройство (ПЗУ), используемое для хранения предпрограммных функций и методов и оперативную память для запоминания хроматографических данных, таких, как температура испарителя, начальная температура колонки, скорость программирования и другие параметры. Генератор временных импульсов необходим для внутреннего контроля времени, которое включает определение точного времени удерживания.
Управление прибором осуществляется путем сравнения измеренных величин с введенными оператором и записанными в памяти. Измеряемыми величинами являются напряжения, которые перед сравнением с заданными значениями переводятся в цифровую форму с помощью аналого-цифрового преобразователя (АЦП). Если значение параметра не совпадает с заданным, микропроцессор выдает соответствующую команду. Рис. 2 иллюстрирует типичный случай, в котором начальная температура термостата колонок задана равной 90 °С. Если температура равна заданной, зажигается сигнальная лампа готовности. Если же нет, то поступает сигнал к изменению температуры в ту или иную сторону, в зависимости от того, выше она или ниже заданной.
Реальные программы, управляющие прибором, много сложнее той, что приведена на рис. 2. Значения температур всех обогреваемых участков, скорости программирования температуры и сигналы детектора принимаются и анализируются ЦПУ. Компьютер может обеспечить очень точное программирование температуры, поскольку во время анализа температура термостата сотни раз проверяется и сравнивается с заданным значением. Скорость программирования можно изменить в любой момент по ходу анализа, вводя с помощью клавиатуры новое значение. Заданные параметры могут быть представлены в виде таблицы в начале или в конце анализа, кроме того, текущее значение любого параметра при необходимости выводится на экран. Все параметры представлены в памяти в виде чисел, поэтому появление пиков, интенсивность которых выходит за величины шкалы, или изменение скорости движения диаграммной ленты не влияет на точность измерения площади пика или времени удерживания.
В конце анализа выдается сообщение о площадях пиков и временах удерживания. В некоторых автоматизированных приборах проводится количественное определение отдельных компонентов путем сравнения площадей пиков этих компонентов с площадями пиков стандартов, введенных до (внешний стандарт) или вместе с пробой (внутренний стандарт).
Программы могут быть очень сложными, и в некоторых приборах оператор может сам модифицировать программу при помощи соответствующих языков программирования, чтобы получить более удобную форму выдачи данных. Если полученные данные находятся в памяти компьютера или записаны на периферийном запоминающем устройстве, их можно использовать многократно, например, можно интегрировать пики, задавая различные параметры интегрирования до получения оптимальных результатов. Прибор может работать автоматически, если установить автоматический дозатор, которым также управляет ЦПУ.
С помощью компьютера можно получать большой объем более точных хроматографических данных. Разработка скоростных методов анализа, автоматическое управление прибором и составление итогового сообщения позволяют оператору большую часть времени использовать для выполнения других работ. Сложность компьютеризованных приборов достигла уровня, когда решающим фактором являются методы отображения, обработки и представления данных.
3. Особенности хромато-масс-спектрометрии.
Если газовый хроматограф можно эксплуатировать без применения компьютера и получать хорошие результаты, то в случае хромато-масс-спектрометра это неверно. Количество полезных данных, получаемых при помощи этого прибора, так велико, что ни практически, ни теоретически невозможно зарегистрировать и обработать их стандартными методами. Если представить как гипотетический случай, что человек во время проведения ХМС анализа записывает и обрабатывает данные вручную, и оценить затраченное время, то оно будет приблизительно в 400 раз больше времени, затрачиваемого компьютерной системой. Это значит, что человеку потребуется более года для того, чтобы сделать ту же работу, которую система хроматограф - масс-спектрометр - компьютер выполняет за один день.