Смекни!
smekni.com

Николаевский В. В (стр. 4 из 82)

Если экстракции подвергали сухие растения — смолы, бальзамы, корни, семена, мох, то душистый продукт, оставшийся на дне вакуума, называется резиноидом. Это готовый продукт для парфюмерии.

Если экстракции подвергали цветки — фиалки, туберозы, мимозы, розы, жасмина, этот продукт называют конкретом, и он не является конечным продуктом. Конкреты подвергают обработке спиртом для удаления воска, затем удаляют спирт.

Полученные различными способами эфирные масла и их летучие функции не являются в точности той совокупностью веществ, которые выделяются растениями. Это связано с тем, что под действием, например, горячего пара некоторые составные части летучих компонентов могут изменяться, улетучиваться. Кроме того, исходный материал для получения эфирного масла может быть не только свежесрезанным, но в некоторых случаях и сушеным.

Большим преимуществом является то, что технологии получения эфирных масел достаточно просты и имеется сырьевая база промышленных эфироносов. Эфирные масла можно довольно просто получать и из отходов, накапливающихся при заготовке древесины: ели, сосны, пихты и деревьев других пород. А эти отходы огромны. Исследования их компонентного состава и стандартизация организационно легко разрешимы.

Средний выход эфирного масла из 100 кг растительного сырья составляет: эвкалипт — 3 кг, лаванда — 2,9 кг, шалфей — 1,4 - 1,7 кг, ромашка — 0,7-1 кг и т.д. Для получения 1 кг эфирного масла розы необходимо переработать 1—2 тонны лепестков растения, а из 100 кг цветков горького апельсина получают всего 50 г эфирного масла. Стоимость эфирного масла зависит от выхода масла на 1 кг растения-эфироноса. Чем выход ниже, тем эфирное масло дороже, хотя имеются исключения.

Компонентный состав эфирных масел.

Эфирные масла состоят из химических групп и отдельных химических элементов. Первичные элементы, ответственные за функцию эфирного масла, — углерод, водород, кислород. Кислород — главный элемент эфирного масла.

Компоненты эфирных масел представлены различными соединениями, которые можно расположить в следующем порядке по их бактерицидной активности: фенолы, альдегиды, спирты, эфиры, кислоты.

Наиболее биологически активные компоненты эфирных масел — спирты, альдегиды, кетоны, фенолы; наименее активные — углеводороды. Для цветковых растений характерен синтез кислородсодержащих производных монотерпенов, спиртов, кетонов, сложных эфиров, оксидов, обладающих высокой биологической активностью.

Кислоты, спирты, альдегиды и др. являются исходными продуктами образования ряда биологически активных веществ или промежуточных продуктов на пути их синтеза.

Характерные компоненты эфирных масел — терпеноиды. Некоторые из них осуществляют окислительно-восстановительные процессы, регулируют активность генов растений, участвуют в фотохимических реакциях, поглощая световую энергию, которая идет на биосинтез компонентов эфирных масел. Терпеноиды обладают хроматоформной системой, могут поглощать лучистую энергию и участвовать в фотохимических реакциях. В связи с этим высказывается предположение, что растения за счет световой энергии активируют атмосферный кислород. Такие терпеноиды, как линалоол, гераниол, фарнезол, будучи связанными с иными химическими структурами, входят в различные биокаталитические системы. Некоторые терпеноиды являются предшественниками феромонов.

Углеродные цепи гераниола, линалоола, нералидола и фарнезола являются ключевыми промежуточными продуктами на пути биосинтеза таких биологически активных веществ, как стероидные гормоны, ферменты, антиокислители, витамины D, Е, К, желчные кислоты.

Азулен — компонент эфирных масел: мятного, эвкалиптового, ромашки и др. Это вещества синего, фиолетового, реже зеленого цвета. В маслах они находятся в виде проазуленов или азуленогенов; обладают противоаллергическим, антифлогическим, бактериостатическим, противовоспалительным действием, способны повышать лейкоцитоз, замедляют свертывание крови. Азуленовые соединения участвуют в фотохимических реакциях. Кроме того, они обладают жаропонижающей, антиспастической, противоопухолевой активностью [Лысенко Л.В., 1967; Максименко Г.Н., 1968; МочалинВ.Б. и др., 1977].

Отдельные компоненты ЭМ (энолы) входят в состав биокаталитических систем, осуществляя окислительно-восстановительные процессы [Николаев А.Г., 1968, 1972].

Тимол, эвгенол, анетол, ионон и др. имеют сходство структур с известными активаторами биоэнергии. Биосинтез компонентов эфирных масел сопровождается затратой большого количества химической энергии на каждую молекулу.

Синтез компонентов эфирного масла из исходных полупродуктов контролируется ферментами, направленность образования которых запрограммирована в молекулярной структуре ДНК (Танасиенко B.C., 1985].

Таким образом, компоненты эфирного масла являются либо исходными продуктами образования многих биологически активных веществ, либо промежуточными продуктами на пути их биосинтеза.

В зависимости от компонентного состава эфирных масел Р.М.Гаттерфоссе разделил их на 7 групп: ЭМ, содержащие специфические терпеновые спирты и соответствующие эфиры (1-я группа), специфические альдегиды (2-я), специфические кетоны (3-я), специфические лактоны (4-я), специфические фенолы (5-я), специфические окислы (6-я) и ЭМ, содержащие специфические терпены (7-я группа).

Некоторые авторы делят ЭМ в соответствии с их основным составом на 3 группы: углеводородные (богатые терпенами), оксигенированные и сульфированные.

Итак, каждый вид ЭМ имеет свой, характерный только для него компонентный состав. Он весьма сложен и постоянно увеличивается в связи с усовершенствованием методов исследования. Так, в эфирном масле герани определено около 300 компонентов, в эфирных маслах розы, бергамота, лимона, мандарина, апельсина — около 500 компонентов в каждом. Некоторые эфирные масла содержат до 800 компонентов, при этом обычно преобладает один из них. На долю многих компонентов приходится одна десятая, сотая и даже тысячная процента, но некоторые из них играют определенную роль в формировании запаха и биологической активности.

Действие основных и второстепенных компонентов ЭМ определяется в суммации или потенцировании эффекта, т.е. совместное действие компонентов гораздо значительнее и сильнее, чем действие каждого из них в отдельности.

Многие компоненты эфирных масел являются либо исходными продуктами образования многих биологически активных веществ, либо промежуточными продуктами на пути их биосинтеза. Они входят в состав ферментных систем, стероидных гормонов, витаминов D, Е, К, антиокислителей, желчных кислот и др.

Использование компонентов эфирного масла.

Основные компоненты эфирных масел находят определенное, но достаточно ограниченное использование. Так, линалилацетат, один из основных компонентов бергамотного, лавандового, шалфейного, жасминового эфирных масел, обладает выраженным спазмолитическим действием. Эвгенол — компонент эфирных масел базилика эвгенольного, гвоздичного — является стимулятором размножения клеток, тимол — компонент эфирных масел монарды, ажгона — обладает очень высокой бактерицидной активностью широкого спектра действия. На его основе создана питательная среда для дифференциации микробов. В практике широко используется ментол — главный компонент эфирного масла мяты. Нашла большое применение и камфора — компонент эфирных масел камфорного дерева и базилика камфорного и др. Из эфирного масла шалфея добывают склареол и амбролит, которые выполняют роль фиксаторов запаха.

Некоторые эфирные масла (ромашки, тысячелистника, гуаяковое) являются источниками азуленовых соединений, которые издавна применяют в народной и официальной медицине как противовоспалительные, антиаллергические, антисептические и противоопухолевые соединения. Эфирное масло лимонной травы используют для получения цитраля, масло гуаяковы — для получения азулена, масло цитронелевое — сырье для гераниевого масла и т.д.

При ароматерапии эфирные масла необходимо использовать в том компонентном составе, в котором они были получены из растений, поскольку каждый компонент эфирного масла играет свою определенную роль, а весь компонентный состав в целом создает гармонию запахов и определяет его целебные свойства, гармонию тела и души, здоровье.

Эфирные масла и их компоненты легко проходят через эпителий капилляров, они свободно преодолевают плаценту, самый надежный биологический барьер.

С помощью транспортных молекул-носителей, находящихся в биологических мембранах, молекулы ароматических веществ проникают через клеточные мембраны и взаимодействуют с рецепторами внутриклеточных биологических комплексов: ДНК, РНК, генов. Они взаимодействуют с ферментной, эндокринной, иммунной и другими системами.

Определение компонентного состава эфирных масел и растительных ароматических веществ в атмосфере.

Отбор пробы — важная стадия аналитического определения состава РАВ в атмосферном воздухе и в растениях. Для концентрирования РАВ, содержащихся в воздухе, используют углеродные адсорбенты на основе графитированных термических саж — карбопаки и карбохром; полимерные материалы — тенакс GC, тенакс Т, тенакс ТА, реже активированный уголь.

Идентификацию и количественное определение компонентов РАВ в атмосферном воздухе проводят на основании газохроматографического и хромато-масс-спектрометрического анализа. Идентификацию и количественное определение состава ЭМ проводят тем же методом.

Проводят также магнитно-резонансную (МР) спектрометрию, которая весьма информативна. МР-спектрометрия дает большую информацию, особенно если необходимо определение химической и структурной формулы при выделении из растений неизвестного органического вещества. Используют также метод инфракрасной спектроскопии, например для количественного определения компонентов ЭМ [Исидоров В.А., 1994].