Смекни!
smekni.com

Николаевский В. В (стр. 59 из 82)

Таким образом, введение в состав искусственной атмосферы летучих фракций эфирного масла лаванды в концентрации 0,5 мг/м.куб. позволяет нормализовать поверхностную активность СЛ, что обосновывает использование масла лаванды для профилактики развития патологических процессов, связанных с дефицитом СЛ (ателектаз, развитие нарушений бронхиальной проходимости и пр.).

Таким же свойством обладает и ЭМ монарды (в условиях содержания в обычной атмосфере). ЭМ эвкалипта и мяты по результатам опытов не влияют на поверхностную активность СЛ.

Глава 17. ФЕРМЕНТНАЯ СИСТЕМА

Некоторые РАВ могут изменять активность ряда ферментов: щелочную фосфатазу, инвертазу, дегидрогеназу, холинэстеразу. РАВ черемухи оказывает влияние на активность каталазы и пероксидазы. РАВ хвои, сосны, чеснока, альфа-пинена изменяют активность гексокиназы, фосфорилазы, дегидрогеназы, снижают также активность группы металлосодержащих и тиоловых ферментов, оказывают тормозящее действие на внутриклеточную оксидазу и пероксидазу лейкоцитов. Инактивирование ферментов автор объясняет взаимодействием РАВ с сульфгидрильными группами белков.

Гибберелин, один из компонентов РАВ, индуцирует образование альфа-амилазы; ауксины — инвертазы, целлюлазы; цитокинины — протеазы и т.д. Под влиянием новоиманина возрастает активность мембранных ферментов. Изменяются и ферментативные функции бактериальных клеток. Летучие фракции чеснока и лука инактивируют сукцинатдегидрогеназу, а лаванды — пероксидазу и оксидазу лейкоцитов.

В экспериментальных исследованиях на модели эмоционального болевого стресса была изучена активность лактатдегидрогеназы и изменение объема митохондрий в сердечной мышце. Предварительное введение РАВ сопровождалось достоверным увеличением гликогена, снижением уровня активности лактатдегидрогеназы по сравнению с таковыми у стрессированных животных. При этом коэффициент сокращения митохондрий был в 3,3 раза выше, чем у животных, не получавших РАВ.

В нашей лаборатории установлено, что РАВ влияют на активность ряда окислительно-восстановительных ферментов. Была также изучена активность ферментов у животных и человека в различных газовых средах и показана возможность их коррекции с помощью РАВ.

Разработка методов, позволяющих изменять активность ферментов, имеет не только теоретическое, но и практическое значение, поскольку создает предпосылки для поиска новых активаторов и ингибиторов внутриклеточных процессов.

Нами выполнены исследования, касающиеся действия РАВ на активность некоторых ферментов, участвующих в окислительно-восстановительных процессах.

Работа проведена на 4 группах крыс-самцов линии Wistar, нахо¬ившихся в течение 3 мес в атмосфере с различным содержанием РАВ. Животные находились в ИА и БИА (0,50 мг/м.куб. атмосферы). Контрольную группу животных содержали в ЕА. Условия содержания и пищевой режим животных во всех группах были стандартными.

В эритроцитах определяли активность глюкозо-6-фосфатдегид-рогеназы (Г-6-ФДГ), лактатдегидрогеназы; в плазме крови — ЛДГ, внемитохондриальной малатдегидрогеназы (МДГ), ацетилэстеразы; в гомогенате печени — Г-6-ФДГ, ЛДГ, МДГ, ацетилэстеразы.

У животных, находившихся в условиях атмосферы, лишенной РАВ, преобладали гликолитические процессы. Об этом свидетельствует увеличение в печени крыс активности ЛДГ — терминального фермента анаэробного метаболизма (от 23,3 мкМ на 1 мг белка у животных контрольной группы до 32,2 мкМ на 1 мг белка в группе животных, содержащихся в атмосфере с дефицитом РАВ). По-видимому, НАД∙Н, образующийся в процессе гликолиза, в основном используется для восстановления пирувата, на что также может указывать активация МДГ печени, которая катализирует реакцию окисления малата с образованием восстановленной формы пиридин-нуклеотидного кофермента.

Подтверждением интенсификации анаэробных обменных процессов может служить также значительное увеличение в печени активности фермента пентозофосфатного пути окисления глюкозы — Г-6-ФДГ с 7,56 мкМ в ЕА до 11,5 мкМ (Р<0,001) в ИА, основная роль которого состоит в поддержании окислительно-восстановительных процессов и регенерировании НАДФ∙Н, а также в защите эритроцитов от повреждающего действия свободных радикалов. Эти изменения, по-видимому, направлены на поддержание окислительно-восстановительных реакций в условиях угнетения аэробного окисления за счет интенсификации других путей энергообразования.

На фоне угнетения аэробного метаболизма в условиях дефицита РАВ снижалась активность ЛДГ и Г-6-ФДГ в эритроцитах по сравнению с контрольными показателями (Р<0,001). Принимая во внимание зависимость метаболизма эритроцитов от состояния их мембран, можно предположить, что увеличение проницаемости эритроцитов в условиях атмосферы с отсутствием в ней РАВ является одной из причин снижения активности указанных ферментов. Возможно, имеет место также угнетение ферментативной активности за счет больших энергетических затрат, необходимых для обеспечения нормальной функции эритроцитов.

Подтверждением предположения о дестабилизации мембранных структур является снижение в печени активности растворимого фермента ацетилэстеразы с 678,6 до 5562,7 ЕД и увеличение содержания данной формы эстераз в плазме крови с 81,8 до 94,7 ЕД.

Сопоставление результатов исследований в группах животных, находившихся в атмосфере с различным содержанием РАВ, позволило выявить существенные различия в абсолютной величине ферментативной активности. Введение РАВ в воздушную среду способствовало нормализации ферментативных реакций. РАВ монарды повышали активность Г-6-ФДГ эритроцитов и снижали активность ЛДГ, МДГ и Г-6-ФДГ печени до контрольных показателей.

Можно предполагать наличие процессов, способствующих стабилизации клеточных мембран под действием РАВ, свидетелем чего является снижение активности ацетилэстеразы плазмы крови на 23%.

Таким образом, длительное пребывание в ИА сопровождается угнетением аэробного метаболизма и переходом обмена на преимущественно анаэробный путь. Биогенизация ИА РАВ дает возможность корректировать эти нарушения.

Эти выводы нашли свое дальнейшее подтверждение в исследованиях по влиянию РАВ монарды и розмарина на ферментные системы дрожжей аэробного и анаэробного типа метаболизма. Дрожжи культивировали в ИА и в БИА с введением РАВ монарды и розмарина (0,05 мг/м.куб. атмосферы). В контрольном варианте дрожжи выращивали в условиях ЕА. Индикатором обменных процессов явилась активность алкогольдегидрогеназы и малатдегидрогеназы. Культивирование дрожжей-бродилыциков в ИА приводило к увеличению более чем в 2 раза активности алкогольдегидрогеназы (от 4,69 до 12,05 ед/r) и малатдегидрогеназы (от 2,9 до 7,2 ед/г). Для дрожжей с аэробным типом обмена была характерна противоположная тенденция.

Введение РАВ в ИА оказывало регулирующее действие на ферментные системы дрожжей, способствуя снижению активности ферментов дрожжей-бродилыциков до уровня контрольных показателей и повышению скорости ферментативных реакций дрожжей с аэробным типом обмена.

Таким образом, полученные данные свидетельствуют о возможности целенаправленной коррекции процессов метаболизма природными концентрациями РАВ.

Липидный обмен. Атеросклероз — самое распространенное в мире заболевание. У большинства пациентов старше 40 лет обнаруживаются атеросклеротические изменения в аорте и артериях. Поэтому важно знать, какое влияние могут оказывать РАВ на атеросклеротический процесс.

Получены убедительные экспериментальные данные о том, что при отсутствии в атмосфере РАВ нарушаются показатели липидного обмена, а биогенизация атмосферы РАВ нормализует эти показатели. Курсы ароматерапии монарды и лаванды при экспериментальном атеросклерозе оказывали выраженное антисклеротическое действие; таким же действием обладает ЭМ розы.

Имеются сообщения о возможности использования ароматерапии для коррекции нарушений обмена бета-липопротеидов и процессов свободнорадикального окисления у больных ХБ. АТ и специальная психотерапия дают хороший эффект в комплексном лечении начальных форм атеросклероза головного мозга. Для профилактики использовали АТ с РАВ пихты, при этом повышенный уровень холестерина и бета-липопротеидов нормализовался.

Антисклеротическим действием обладают РАВ розы, сантолены кипарисовидной, скареол; компоненты РАВ снижают общий холестерин и липиды печени.

Механизм противосклеротического действия РАВ объясняют их ингибирующим действием на ферменты, окисляющие липиды [Барабой В.А., 1984].

Целью нашего исследования являлось изучение влияния трех ЭМ (лаванды, монарды и базилика) на течение экспериментального атеросклероза. Опыты проводили на кроликах породы шиншилла массой 2,5—3 кг. Экспериментальный атеросклероз моделировали ежедневным в течение 4 мес скармливанием животным по 0,3 г/кг холестерина (ХС) в смеси с овощами — капустой и свеклой. В сыворотке крови животных определяли содержание общего ХС (ОХС), холестерина, бета-липопротеидов (бета-ХС) и вычисляли коэффициент атерогенности по формуле:

OXC – бета-XC / XC

характеризующей степень дислипопротеинемии. Через 1 мес от начала опыта животных делили на группы, индентичные по уровню ХС в крови (по 14 кроликов). Животные опытных групп вдыхали РАВ в определенной концентрации (в закрытом помещении) ежедневно в течение 3 ч (кроме субботы и воскресенья). В первой серии опытов изучали действие РАВ лаванды, во втором — монарды, в третьем — базилика. В каждой серии была контрольная группа (1-я — в первой серии и 4-я и 6-я — соответственно во второй и третьей сериях). Животные контрольной группы получали только ХС в смеси с овощами. Кролики 2-й и 3-й групп (первая серия) вдыхали РАВ лаванды (0,1—0,2 и 5—10 мг/м.куб. соответственно), животные 5-й группы (вторая серия) — монарды (0,1—0,2 мг/м.куб.), кролики 7-й группы (третья серия) — базилика (0,02—0,03 мг/м.куб.). Через 4 мес от начала опыта скармливание ХС прекращали и через 1 мес животных забивали декапитацией.