После антигенной стимуляции лимфоидной клетки она начинает интенсивно делиться, при этом количество лимфоцитов увеличивается. К ним относятся плазматическая клетка (производитель антител), малые лимфоциты (они составляют 90% общего числа лимфоцитов) и макрофаги.
В составе организма насчитывается более 1013 различных клеток. Предполагают, что примерно одна из миллиона может быть мутантной. За жизнь человека в его организме возникает около 20 млрд мутационно измененных клеток. Часть из них может стать раковыми. Поэтому мутантные клетки должны уничтожаться. Специфический иммунитет контролирует генетическую целость клеток организма. Существуют и другие формы контроля генетического постоянства организма.
На пути мутантных клеток стоят аллогенная ингибиция, инактивация стволовых клеток и специфический иммунитет, феномен аллогенной ингибиции. Он состоит в том, что нормальные, нелимфоидные клетки узнают мутантную клетку. В результате такая клетка погибает в окружении обычных клеток.
Явление инактивации несингенных стволовых клеток обусловливается действием живых лимфоцитов на чужеродные стволовые клетки. Полагают, что инактивирующее (тормозящее) действие лимфоцитов распространяется и на пролиферирующие клетки, например мутантные.
В противоопухолевой защите важную роль играет система естественной клеточной резистентности, связанной с функцией естественных нормальных киллеров (NK-клеток) и макрофагов. Эта система независима от вилочковой железы. Клетки опухоли разрушаются также киллерными клетками (К-клетками). Специфическая противоопухолевая защита связана с Т-зависимой и Т-независимой популяциями лимфоидных клеток. Ингибирующий эффект лимфоцитов строго специфичен.
Представляют интерес данные, полученные в лаборатории, при изучении действия эфирных масел и их ароматов на иммунную систему.
Действие на первичный гуморальный иммунный ответ. Эфирное масло монарды нормализует уровень первичного иммунного ответа при введении его после иммунизации и при исходно низком уровне антител. При введении этого же масла до иммунизации или при высоком уровне антител никакого его влияния не отмечалось.
Действие на вторичный гуморальный иммунный ответ. При трехкратном внутримышечном введении эфирного масла монарды за 4— 6 дней до начала иммунизации наблюдалось 18-кратное увеличение титра вырабатываемых антител.
Действие РАВ эфирных масел на состояние иммунной системы и иммунорегуляторную активность легких. Пребывание крыс линии Wistar в атмосфере при 7-кратном воздействии эфирного масла монарды сопровождалось стимуляцией функциональной активности Т-системы иммунитета по результатам теста с ФГА (опытная группа — 0,56 мм , контрольная — 0,42 мм , Р<0,05).
Действие эфирного масла монарды, вводимого в дыхательные пути, на иммунную систему. При введении эфирного масла монарды или базилика путем внутритрахеальных вливаний обработанной ультразвуком водной эмульсии, ингаляции аэрозоля или воздействия летучими ароматическими веществами были отмечены его влияние на общую Т-систему практически без изменения локального иммунного аппарата легких у нормальных животных и стимуляция антителопродукции при экспериментальном воспалении.
При введении масел непосредственно в дыхательные пути такой же водной эмульсии, ингаляции аэрозоля в концентрации 0,1—1% аллергической реакции не наблюдалось. Более того, монарда подавляла сенсибилизацию к яичному белку.
Действие эфирного масла монарды на иммунную систему крыс с экспериментальным иммунодефицитом. Сочетание тимэктомии и экспериментального воспалительного процесса в легких на 90-е сутки сопровождалось подавлением практически всех исследованных звеньев иммунного ответа. В этих условиях курсовое воздействие РАВ монарды, в меньшей степени базилика, сопровождалось весьма выраженным нормализующим влиянием, т.е. эфирные масла оказывали положительное воздействие на иммунную систему даже в отсутствие вилочковой железы.
Влияние ингаляционного введения аэрозоля эфирных масел на развитие сенсибилизации дыхательного тракта. Ингаляционное введение яичного белка предварительно сенсибилизированным морским свинкам сопровождалось развитием анафилактической реакции без гибели животных. Частота дыхания возрастала до 184 в 1 мин при нормальной частоте 124 в 1 мин.
У животных, сенсибилизированных яичным белком, которые одновременно с сенсибилизацией и в последующие два дня получали ингаляции монарды, базилика или лавра, не отмечалось признаков анафилактической реакции в ответ на ингаляционное введение разрешающей дозы антигена. Частота дыхания не изменялась.
Действие эфирного масла монарды на гиперчувствительность замедленного типа (ГЗТ). Эфирное масло монарды подавляет развитие ГЗТ по отношению к самым различным антигенам при использовании разнообразных схем сенсибилизации и в широком диапазоне доз — от 2 до 250 мг/кг. Высокие дозы подавляли формирование ГЗТ по отношению к стафилококковому антигену при любых схемах. Средние дозы (70 мг/кг) подавляли отторжение кожного аллотрансплантата, но при одновременном с трансплантацией введении. Низкие дозы (2 мг/кг) ингибировали развитие реакции ГЗТ только при предварительном введении. Эффекты ингибиции ГЗТ наблюдались в ответах на двух различных видах животных.
Действие растительных ароматических веществ на животных различных генетических линий. Для исследования возможной связи РАВ с генетическими особенностями животных нами были поставлены опыты на трех группах инбредных линий мышей — ДВА, СВА, C57BL6 по 32 животных в каждой и трех соответствующих контрольных группах по 8 животных. Каждая опытная группа была разделена на 4 подгруппы по 8 животных. Мыши этих подгрупп ежедневно по 40 мин (кроме субботы и воскресенья) находились в камерах, воздух которых содержал летучие компоненты масла лаванды в концентрации 20 мг/м.куб. Мышам первой подгруппы было проведено 5 процедур, второй — 10, третьей — 15, четвертой — 20 процедур. По окончании последней процедуры проводили исследования и животных забивали. В контрольной группе процедуры не проводили.
Рис. 7. Влияние РАВ на показатели липидного обмена животных, длительно содержащихся в гермообъемах с разным составом газовых сред.
1 — общий холестерин (ммоль/л); 2 — триглицериды (ммоль/л); 3 — альфа-липопротеиды (ммоль/л); 4 — бета-липопротеиды (ммоль/л); 5 — индекс атерогенности (ед.); а — ЕА; б — ИА; в — БИА.
Животных опытных и контрольных групп исследовали до начала эксперимента и на 5-й, 10-й, 15-й и 20-й день эксперимента. Определяли количество АОК, суммарное количество антител, иммуноглобулины, функциональное состояние Т-лимфоцитов, ставили реакцию ГЗТ.
Установлено, что у инбредных линий мышей динамика иммунного ответа под влиянием летучих фракций лаванды имела однонаправленный характер. По высоте иммунного ответа между разными линиями мышей регистрировались достоверные различия (рис. 7). Так, сравнение иммунных ответов мышей линии C57BL6 и СВА, мышей линии C57BL6 и DBA выявило достоверные различия (Р<0,001 и Р<0,01) между группами по количеству АОК, титру общих антител, ГЗТ, функциональной активности Т-клеток. Можно с уверенностью сделать заключение, что неоднотипность иммунного ответа разных групп инбредных линий мышей при действии на организм РАВ обусловлена их генетической детерминированной неоднородностью.
В другом эксперименте опыты поставлены на двух конгенных линиях мышей — BLOP 111 (20 животных) и BLOD2 (44 животных). Во время эксперимента, который длился 25 дней, мышей помещали ежедневно (кроме субботы и воскресенья) в атмосферу, содержащую РАВ лаванды в концентрации 20 мг/м.куб. Состояние иммунной системы оценивали на 7—15-й и 25-й день эксперимента по показателям первичного иммунного ответа, включающим определение АОК, IgM, реакцию ГЗТ и функциональную активность Т-лимфоцитов. Результаты исследований свидетельствуют, что у конгенных мышей линии BLOP111 и BLOD2 динамика показателей иммунного ответа в первые 25 дней опыта имела однонаправленный характер. Однако на 25-й день эксперимента было зарегистрировано достоверное различие между группами по количеству АОК. Можно предположить, что те различия, которые были выявлены в иммунном ответе двух конгенных линий мышей на действие РАВ, связаны с их неоднородностью по генам комплекса гистосовместимости Н-.
Фенотипическое действие РАВ на иммунную систему. Опыты поставлены на мышах линии СВА (высокореагирующих на эритроциты барана) и C57BL6 (низкореагирующих). Животные опытных групп ежедневно по 40 мин (кроме субботы и воскресенья) находились в камерах, воздух которых содержал летучие фракции монарды в концентрации 20 мг/м.куб. Проведено 8 процедур. Животные контрольных групп ингаляций не получали. Результаты исследований представлены в табл. 10. Приведенные данные свидетельствуют, что на 10-е сутки отмечается тенденция к нарастанию количества Т-лимфоцитов у мышей линии СВА.
Таблица 10. Клеточный иммунный ответ мышей линий СВА и C57BL6 на эритроциты барана на 10-е сутки ингаляции летучими фракциями монарды
Линия мышей | Группа | Число Т-РОК | Р* |
СВА | Контроль (6) | 13±5 | 0,05 |
C57BL6 | Контроль (3) | 7±2 | 0,05 |
* Р — достоверность между опытом и контролем.
Обнаруженные данные о стимулирующем воздействии монарды на Т-систему иммунитета удалось подтвердить в экспериментах на низкоотвечающей на эритроциты барана линии мышей C57BL6, т.е. летучие фракции эфирного масла монарды повышали иммунный ответ у низкореагирующих на эритроциты барана линии мышей до уровня, отмеченного у животных линии СВА, высокореагирующих на этот антиген.