Смекни!
smekni.com

Представление о старости и старении (стр. 3 из 7)

-реакции свободного окисления макромолекул.

4.2.1.Молекулярные механизмы старения [4;10;9]

Факторы, экспрессирующие ген, но не прямо вызывающие изменения в генетическом коде, играют значимую роль в старении. Это - метилирование ДНК и гликозилирование белков и ДНК. Метилирование происходит в обеих нитях ДНК симметрично, метилированные участки цитозина выполняют различные функции, а также метилирование ДНК вовлечено в регуляцию активности генов. Изменения же в метилировании, связанные с возрастом, способствуют опухолевой трансформации клеток. Возрастное гиперметилирование наблюдается в нормальной слизистой оболочке толстой кишки и в ряде других органов, и увеличивается с возрастом линейно и может способствовать возрастному накоплению мутаций и увеличению риска развития рака. Патологическое гликозилирование белка и ДНК запускает цепь химических событий, продуцирующих метаболиты, способные создавать ковалентные связи внутри белковых молекул и связывать различные белки между собой. Это влечет к утолщению базальной мембраны в мезангинальном матриксе почек, может приводить к почечной недостаточности при диабете, а увеличение количества связей в коллагене снижает его эластичность. Гипергликемия способствует образованию и активных форм кислорода, и конечных продуктов гликозилирования, и как следствие- способствует накоплению делеций в митохондриальной ДНК и других мутаций в клетках мышечной оболочки сосудов. При нелеченном диабете наблюдаются многие признаки ускоренного старения (нарушение заживления ран, повышенный риск развития рака, катаракта, повреждения сосудов и капилляров).Возможным механизмом влияния низкокалорийной диеты на предупреждение старения является снижение концентрации глюкозы в крови и уменьшение неэнзиматического присоединения глюкозы к долгоживущим белкам, например, к гемоглобину. Снижение концентрации глюкозы приводит к снижению как гликозилирования белков, так и перекисного окисления липидов. Кроме того, с возрастом происходит накопления повреждений ДНК, что приводит к снижению эффективности систем ее репарации, причем отмечаются видовые различия. Так, печень человека примерно в десять раз быстрее удаляет промутагенные основания, чем печень крысы; значительно быстрее происходит элиминация из лимфоцитов и фибробластов человека. Причем большая повторность генов у человека по сравнению, скажем с коровой или мышью, может быть важным фактором долголетия, так как повреждения уникальных генов могут тоже способствовать преждевременному старению. [4,С.16]

4.2.2. Окислительный стресс и старение

Свободнорадикальная теория старения [4;10;9] выдвинутая Д.Харманом и Н.Эмануэлем, объясняет не только механизм старения, но множество связанных с ним патологических процессов (сердечно- сосудистые заболевания, возрастные иммунодепрессии, дисфункции мозга, катаракта…). Это позволило предположить, что вещества, препятствующие протеканию реакций по свободно- радикальному механизму, то есть различные ингибиторы и антиоксиданты, будут оказывать профилактическое и терапевтическое действие и увеличивать время жизни организма. Свободные радикалы, содержащие кислород ,О2-, ОН-, RО2- чрезвычайно реакционно- способные, и если бы не существовало механизмов их инактивации, то они могли бы вызвать быстрое разрушение биологических структур: мембран, коллагена, ДНК, хроматина, структурных белков. Они участвуют в регуляции также внутриклеточного уровня кальция. Так, при старении снижается эффективность защитных систем организма, контролирующих скорость перекисного окисления липидов и белков: уменьшается содержание природных антиоксидантов, увеличивается количество «неактивных молекул» ферментов, разрушающих перекиси, накапливаются высокомолекулярные «шлаки» продуктов окисления. [9] Подсчитано, что за 70 лет жизни человека организм производит около 1 тонны радикалов кислорода, хотя только 2-5% вдыхаемого с воздухом кислорода превращается в его токсические радикалы. В клетке крысы может возникать до 10 тысяч вызванных активными формами кислорода повреждений ДНК в день, и при постоянных условиях до 10% молекул белка могут иметь карбонильные модификации. Подавляющее большинство из них нейтрализуются еще до того, как успеют повредить те или иные компоненты клетки. Но четыре из каждого миллиона образующихся супероксидных радикалов успевают ускользнуть от антиоксидантной защиты (ферменты и витамин) защиты. А при экстраполяции кривой экспоненциального накопления повреждений митохондриальной ДНК до уровня 100% в клетках сердца человека дается оценка в 129 лет.

4.3.Репродукция и старение

Существует точка зрения, что генетическая программа развития исчерпывается достижением репродуктивного успеха, то есть рождением потомства и выживанием организма после завершения репродуктивной функции.[4;10]Длительные период репродукции дают виду преимущества, тогда как после окончания этого периода выживаемость вида снижается. Доказано, что женщины, которые прожили 100лет и более, в 4 раза чаще рожали детей после 40 лет, чем те, которые прожили более 73 лет, то есть поздняя менопауза может быть фактором, способствующим долголетию. Но ранние роды и большое число детей негативно сказываются на продолжительности жизни, причем продолжительность жизни дочерей больше коррелирует с продолжительностью жизни матери, чем отца, тогда как у сыновей эта зависимость значительно меньше выражена и не коррелируется с полом родителей.

Изучая данные о гетерозиготности генома (на 77 зоологических и 30 ботанических видах) установлено, что гетерозиготность достоверно коррелирует со скоростью полового созревания и отрицательно- с продолжительностью жизни, в то время как долгожительство человека как и других биологических видов, определяется высокой индивидуальной гомозиготностью. Чем выше индивидуальная гетерозиготность, тем больше энергетические затраты организма приходятся на этот период онтогенеза, выше темпы развития, раньше наступают половозрелость и первая репродукция, и соответственно короче оказывается жизнь. Кроме того, важна оценка груза мутаций, полученных родителями в процессе старения. Так как частота мутаций в половых клетках мужчин с возрастом много выше чем женщин, то потомство подвергается большему риску генетических нарушений (и меньшей продолжительности жизни)в случае отцовства в позднем возрасте. Особенно это касается дочерей старых отцов.

4.4.Гены долголетия.

Ведется активный поиск возможных генов смерти и долголетия. В настоящее время ген аполипопротеина Е (АпоЕ)имеет существенное значение для долгожительства. У столетних лиц выявлено отчетливое преобладание аллеля Е2 этого гена над аллелем Е4, а преобладание аллеля Е 4 предрасполагает к гиперхолестеринемии, коронарной болезни сердца и болезни Альцгеймера. На роль генов , определяющих долголетие, могут претендовать гены ангиотензин- превращающего фермента (липидный обмен), ген bс-2(кодирует мембраны митохондрий и блокирует токсический эффект гидроксильных радикалов), ген белка р 53(контролирует эволюцию раковых клеток), ген dаf 16 (отвечает за низкий уровень инсулина).Большинство исследователей полагает, что существует семь категорий генов, влияющих на долголетие: 1. Гены, являющиеся «причиной» старения. Но, видимо, у большинства видов животных, включая человека, такие гены отсутствуют, так как должны приводить к снижению репродуктивной способности и элиминироваться естественным отбором. 2.Гены, влияние которых обусловлено их модулирующим действием на риск возникновения в раннем возрасте патологических процессов и заболеваний (например, ген прогерии Хатчинсона- Гилфорда). 3. Гены, которые определяют индивидуальный характер старческих проявлений (их десятки тысяч). Различие в таких генах у человека позволяет понять, как скоро тот или иной человек поседеет или облысеет, разовьется ли у него остеопороз, болезнь Альцгеймера, макулярная дегенерация или иное ассоциированное с возрастом заболевание.4. Гены, которые увеличивают ожидаемую продолжительность жизни и максимальную продолжительность жизни, вмешиваясь сами по себе в процесс старения, регулируя его механизмы : гены регулирующие ответ на гормон роста, передачу сигнала ИГФ-1 и ответ на стресс 5. Естественно наблюдаемые аллели и их комбинации, влияющие на старение.6. Гены, предположительно влияющие на скорость старения, определяемую функцией кодируемых ими белков (так называемые «гены, страхующие долголетие»), например, гены, кодирующие белки репарации, предотвращающие повреждение компонентов клетки. 7.Гены, определяющие межвидовые различия ожидаемой продолжительности жизни. Перспективным в их изучении является генетически- демографический подход, комбинирующий демографическую информацию с данными о генетических маркерах.

4.5.Клеточное старение

Онкологам хорошо известны многочисленные штаммы перевиваемых in vivo и in vitro опухолевых штаммов и линий, которые поддерживаются в течение многих десятков лет, то есть эти клетки являются практически бессмертными (иммортализированными). Классическими стали опыты А.Карреля, которому удалось культивировать фибробласты сердца куриных эмбрионов в течение 34 лет. Но в клеточных культурах не удается длительно поддерживать клетки, полученные из нормальных неопухолевых тканей. После ограниченного числа клеточных делений (50-70 для эмбриональных фибробластов человека) нормальные соматические клетки человека переходят в нерепликативное состояние, называемое клеточным старением. [4]

4.6.Роль теломеры и теломеразы в старении

В 1971 году А. Оловников предположил теорию маргинотомии: при матричном синтезе полинуклеотидов ДНК- полимераза не в состоянии полностью воспроизвести линейную матрицу, реплика получается всегда короче ее начальной части, то есть происходит укорочение ДНК каждом делении клетки, подобно шагреневой коже, ограничивая пролиферативный потенциал клетки и являясь счетчиком числа ее делений. В 1985 году открыт фермент- теломераза, который достраивал укороченную полимеразу в половых клетках и клетках опухолей, обеспечивая их бессмертие. Имеются существенные видовые различия в длине теломер, а репрессия теломеразы определяет клеточное старение (лимит Хейфлика). Установлено, что при введении теломеразы в клетки фибробластов человека, которые в норме делятся не более 50-80 раз, они стали способными поделиться 280 раз без признаков старения и патологии.. Клетки больных синдромом преждевременного старения Хатчинсона-Гилфорда и синдромом Дауна имеют укороченные теломеры. Укорочение теломер наблюдается и при стрессе, при хронической гипоксии, обусловленной различными патологиями (например, сосудистой деменцией, атеросклерозом, анемией…) Опыты с теломеразой открывают новые перспективы в геронтологии и онкологии.[4]