Смекни!
smekni.com

История развития цепных дробей и их приложения (стр. 2 из 4)

Катальди и Бомбелли пришли к цепным дробям, исходя из извлечения квадратного корня из чисел, а Даниель Швентер (1585-1636), немецкий математик, пришёл к цепным дробям путём приближённого представления обыкновенных дробей с большими числителями и знаменателями. Он раскладывал обыкновенную дробь в цепную, используя таблицу, с помощью весьма интересного способа [25]. Таким образом, он нашёл рекуррентные соотношения для последовательного вычисления числителей и знаменателей подходящих дробей. Но при этом Швентер рассматривал только правильные дроби – дроби, числители которых все равны единице, а все знаменатели являются натуральными числами.

В середине XVII века английский математик Джон Валлис (1616-1703) первым по времени разложил трансцендентное число

в бесконечное произведение:
…, а У. Броункер (1620-1686), первый президент Королевского общества, около 1659 г. без доказательства опубликовал разложение его в цепную дробь:
.

Следующий шаг в развитии теории цепных дробей был сделан Христианом Гюйгенсом (1629-1695). Он строил модель солнечной системы с помощью набора зубчатых колес. По расчетам оказалось, что отношение числа зубцов

двух каких-либо колёс должно быть равным отношению времён обращения двух планет вокруг Солнца. Это отношение выражается достаточно точно в виде (несократимой) дроби с большим числителем и большим знаменателем. Изготовление же таких зубчатых колёс, практически очень сложно. Тогда Гюйгенс нашёл среди дробей с меньшим числителем и меньшим знаменателем подходящую дробь к числу
[16]. Как и Швентер, Гюйгенс решил эту задачу посредством разложения обыкновенной дроби в цепную дробь и поэтому ограничился рассмотрением правильных цепных дробей. Благодаря чему была найдена подходящая дробь
, аппроксимирующая дробь с большими числителем и знаменателем, и имеющая погрешность, которая составляет лишь десятитысячную долю от единицы. Гюйгенс обратил внимание на то, что нельзя найти обыкновенную дробь с меньшими числителем и знаменателем, чем подходящая, которая была бы ближе к значению цепной дроби; а также, что подходящие дроби попеременно то больше, то меньше значения цепной дроби.

Можно сказать, что цепными дробями занимались от случая к случаю, и первым, кто систематизировал знания о цепных дробях и изложил полную их теорию, насколько это было возможно сделать в ту эпоху, был Леонард Эйлер (1707-1783). Он опубликовал свою первую работу в 1744 г., в которой рассматривал цепную дробь общего вида и впервые появляются соответствующие цепные дроби. Следует заметить, что сам термин «цепная дробь» появился лишь в XVIII веке, а до этого времени использовалось понятие «непрерывная дробь». Вторая работа Эйлера, вышедшая в 1750 г., фактически являлась её продолжением, в ней рассматривались вопросы о применении цепных дробей для решения дифференциальных уравнений, алгоритм нахождения подходящих дробей, преобразование числовых рядов в равноценные цепные дроби, представление иррациональных чисел в цепные дроби и нахождение для некоторых из них подходящих дробей. Из его работ стало ясно, что непрерывные дроби могут применяться как в теории чисел, так и в анализе. Эйлеру также принадлежат и многие другие работы, связанные с изучением и применением цепных дробей.

1.2 Применение цепных дробей в теории чисел

Задачами, относящимися к теории чисел, являются разложения действительных чисел в правильные непрерывные дроби и аппроксимации действительных чисел с помощью цепных (непрерывных) дробей. Здесь наиболее важным является вопрос о степени приближения, которое обеспечивает n-я подходящая дробь и об оценке погрешности при замене действительного числа подходящей дробью.

Большой вклад в теорию правильных непрерывных дробей внёс Жозеф Луи Лагранж (1736-1813), доказавший, что квадратичные иррациональности есть именно те числа, которые имеют периодические разложения (начиная с некоторого n) [8]. Им предложено неравенство, оценивающее погрешность при замене действительного числа его подходящей дробью, а также решение уравнения Пелля

, где
и
- иррациональное число [14, Гл.6, §4, С. 196] в виде пары {Pn(
), Qn(
)} для некоторых значений n. Законченное решение этой задачи дал Адриен Мари Лежандр (1752-1833); частные решения были уже получены Эйлером (уравнение Пелля интересно, в частности, тем, что может быть использовано при решении задач аддитивной теории чисел, таких, как, например: «каждое простое число вида 4n+1 является суммой двух квадратов». – Такой результат сформулировал Пьер Ферма (1601-1665) и впервые доказал Эйлер. Доказательство же, основанное на непрерывных дробях, дал Карл Фридрих Гаусс (1777-1855)).

Эварист Галуа (1811-1832) в своей первой опубликованной работе исследовал некоторые периодические правильные непрерывные дроби. Он дал определение двойственных периодических правильных непрерывных дробей [5, Гл.3, 3.3, С.71].

Жозеф Лиувилль (1809-1882) первым доказал существование трансцендентных чисел. В 1851 г. он отметил, что алгебраические числа не могут быть достаточно точно аппроксимированы рациональными числами. Он доказал, что для

- корня неприводимого полинома с целыми коэффициентами степени n существует константа с: 0<c<1, что для всех подходящих дробей выполняется неравенство
[2, Гл.29, п.2, Т 270, С. 264]. Используя этот результат, он получил возможность привести сколь угодно много примеров трансцендентных чисел.

Результат, полученный Адольф Гурвицем (1859-1919) в 1891 заключается в том, что неравенство

всегда имеет бесконечное число рациональных решений
(Т. 12, С. 33). Эмиль Борель (1871-1956) дал простое доказательство этого факта, заметив, что среди любых трёх следующих одна за другой последующих дробей правильного непрерывно-дробного разложения
имеется хотя бы одна, которая удовлетворяет данному неравенству.

Оттенок теории меры придали этим результатам Борель и Феликс Бернштейн (1878-1956), которые доказали, что для почти всех х: 0<x<1, последовательность {an} не ограничена. А.Я.Хинчин (1894-1959) дал дальнейшее развитие этому направлению – он основал метрическую теорию непрерывных дробей [21].

1.3 Применение цепных дробей в аналитической теории

Значительный вклад в аналитическую теорию внёс Эйлер. Им были получены разложения в непрерывные дроби для интегралов и степенных рядов, включая и расходящиеся, а также показал, как разложение Броункера для

может быть выведено либо из формулы приведения Валлиса, либо из знакопеременного ряда Грегори – Лейбница для
. Другим вкладом Эйлера было решение дифференциального уравнения Риккати при помощи непрерывных дробей. В аналитическом направлении теории цепных дробей работали Иоганн Генрих Ламберт (1728-1777) (разложил в непрерывные дроби ln(1+x), arctgx и tgx; и полностью исследовал вопросы сходимости непрерывных дробей к этим функциям), Лагранж, Гаусс, Карл Густав Якоби (1804-1851). Девятнадцатый век стал временем бурного развития аналитической теории цепных дробей. Методы непрерывных дробей использовались при изучении специальных функций, для нахождения конкретных численных результатов. В области теории разложения и сходимости непрерывных дробей, элементами которых являются линейные функции комплексного переменного, работали такие математики, как Пьер Симон Лаплас, Лежандр, Якоби, Эйзенштейн, Лаггер, Бернхард Риман (1826-1866), Томас Иоаннес Стилтьес, П.Л. Чебышев (1821-1894), Фробениус (1849-1917) и Анри Пуанкаре (1854-1912). Эти исследования оказали далеко идущее влияние на дальнейшее развитие математики. Особенно это относится к работам Стилтьеса, которые привели к таким важным исследованиям, как проблема моментов, теория интеграла Стилтьеса, начало систематического изучения сходимости последовательностей голоморфных функций и первое применение Гильбертом и его школой аппарата спектральной теории самосопряжённых операторов в гильбертовом пространстве к проблеме моментов. В работах Пуанкаре и Стилтьеса, в которых разложения в непрерывные дроби применялись в связи с расходящимися рядами, по-видимому, впервые появились асимптотические разложения.