Смекни!
smekni.com

На пути поиска программы и инициального субстрата старения "Успехи геронтологии", 1999г., выпуск 3 (стр. 5 из 6)

Однако, если верна гипотеза Кирквуда, то скорость старения должна зависеть от исходного размера генома и числа транспозонов в нем. В таком случае, D.melanogaster, имеющая в 7 раз больше транспозоноподобных элементов, чем D.simulans, должна стареть намного быстрее вида - близнеца. Таким образом, модели Кирквуда также противоречат некоторые твердо установленные факты о старении.

В последнее время многие авторы пришли к пониманию важности анализа дисперсии кривых выживания для изучения механизмов старения. Некоторые гипотезы о старении позволяют предсказать возможные дисперсии кривых выживания и корреляции продолжительности жизни с рядом других признаков организмов. Используя эти теоретические предсказания, Hughes et al. [25, 50], анализируя дисперсии кривых выживания, а также распределений мух по весу и плодовитости и корреляции между этими признаками, по результатам сравнения теоретических предсказаний с экспериментальными данными, сопоставляют две теории старения - плейотропную и накопления мутаций. В первой из них отдается предпочтение теории накопления мутаций перед теорией "антагонистической плейотропности". Во второй работе сделана попытка такого сравнения через сопоставление дисперсий кривых выживания родственных линий дрозофилы. Однозначного ответа о преимуществе одной из теорий получить не удалось. В работе [81] Promislow et al. использовали анализ дисперсий для проверки гипотезы Medawar об ослаблении отбора. Суть этой гипотезы сводится к накоплению вредных мутаций с возрастом вследствие ослабления отбора с увеличением возраста. Поскольку реальная дисперсия смертности исследованных дрозофил не совпадала с теоретически предсказанной на основе этой гипотезы, гипотеза не подтвердилась. Lebourg [61] развивает применение анализа дисперсий и предлагает применять мультивариантный анализ в сравнительной геронтологии.

АНАЛИЗ МЕХАНИЗМА СТАРЕНИЯ

Универсальность, всеобщность и надежность работы механизма старения позволяют поставить задачу поиска единой модели механизма старения. Рассмотрим, какие свойства должна предсказывать модель старения. Приведенные в первом разделе факты, изложенные в пунктах 3 - 6 однозначно указывают на то, что продолжительность жизни определяется генетически: дифференцировка (п.3) характерные видовые признаки (п.4) и работа систем pепаpации (п.5) определяются генами, по которым возможна селекция (п.6). Существуют и прямые данные об участии сотен генов в определении продолжительности жизни.

Однако определяется продолжительность жизни исключительно генетически обусловленным запасом прочности организма или существует специальный разрушительный механизм старения? Многие ли из упомянутых выше генов имеют отношение к собственно механизму старения? Многие заболевания, в том числе и генетически обусловленные, приводят к сокращению жизни, не затрагивая фундаментальный механизм старения. Кроме того, по крайней мере некоторые мутации в генах, определяющих работу механизма старения, должны увеличивать продолжительность жизни. Пока известно лишь несколько таких генов у нематоды [39]. Реализуется ли механизм старения только через белки, заданные в генах, или для его протекания необходимы некие внегенные геномные структуры?

Для ответа на эти вопросы обратим внимание на некоторые упоминавшиеся ранее особенности старения:

1. Весьма широкая вариация продолжительности жизни линейных особей одной популяции (коэффициент вариации кривых выживания самых разных организмов - 0,2-0,3) возможна только при ответственности за признак большого числа генов. Когда причиной естественной гибели организмов являются несколько ферментов (работа небольшого числа генов), как у лососей во время нереста, вариация продолжительности жизни намного ниже, кривые выживания имеют "прямоугольную" форму.

2. Универсальность динамики смертности и точное сохранение всего спектра старческих изменений у различных млекопитающих (п 2) при возможном различие в продолжительность жизни в 50 раз и рост средней продолжительности жизни более чем в два раза в эволюции гоминид до человека с сохранением всего спектра старческих изменений при изменении не более 2% генов возможны только при том условии, что работу механизма старения определяет небольшое число генов.

3. Значительные спонтанные вариации средней продолжительности жизни внутри одной линии дрозофил от поколения к поколению без изменения формы кривых выживания (.п 7) вообще не характерны для генетически обусловленных признаков.

Указанные выше противоречия можно разрешить, если предположить, что специальный механизм старения существует и его pабота определяется не только генами, но и определенными некодирующими белки структурами генома, сама структура которых допускает значительные вариации.

Все это указывает на то, что конкретный механизм старения животных пока крайне трудно определить в привычных терминах классической молекулярной биологии.

Представление о том, что же в действительности служит инициальным субстратом старения, абсолютно необходимо для того, чтобы биология старения перешла на уровень современной молекулярной биологии. Четкое определение этого субстрата несомненно поможет анализу работы механизма старения. Так настоящий информационный взрыв в генетике начался с открытия субстрата наследственности - ДНК.

СУБСТРАТ СТАРЕНИЯ

Выше мы привели факты, свидетельствующие о существовании потенциальной фазы старения Для сохранения памяти и развития событий необходим материальный субстрат - субстрат старения. Она проявляет себя в том, что в соматических клетках сохраняется "память" о том, что за такой-то отрезок календарного времени в клетках накоплено некое количество повреждений, которое по достижении определенного порога приведет к проявлению видимых признаков старения. Повреждающие агенты - радиация и химические вещества - могут увеличить число таких повреждений и ускорить старение, тогда как защитные факторы, в частности, антиоксиданты окажут прямо противоположный эффект.

Мы обосновали , что длительное сохранение памяти о воздействиях возможно только в ДНК. Кроме того, исследуя радиосенсибилизацию БУДР по признаку радиационного сокращения продолжительности жизни, мы уточнили, что субстратом старения является ядерная ДНК нейронов [14]. Однако геном - слишком большое и сложное образование. Необходимо конкретизировать ответственные за старение участки.

ДНК и старение

Известно, что старение сопровождается накоплением повреждений и мутаций в соматических клетках. Многие авторы особое внимание уделяют анализу повреждений ДНК нейронов старых животных. Dolle at al. [34], исследуя ДНК печени и мозга трансгенных мышей, пришли к заключению, что число мутаций значительно возрастает только в ДНК печени мышей старше 27 мес. Увеличения числа мутаций в клетках мозга с возрастом авторы не обнаружили. На протяжении всей жизни мышей в ДНК печени было больше мутаций, чем в ДНК мозга. Mandavilli, Rao [67] показали, что число одно- и двунитевых разрывов ДНК, как спонтанных, так и индуцированных MNNG и глютаматом, возрастает в клетках различных областей мозга старых крыс по сравнению с молодыми. Причем особенно это заметно в клетках коры головного мозга. Эта же группа авторов [66] исследовала роль апоптоза в увеличении числа разрывов ДНК нейронов. Показано, что только после обработки MNNG и глютаматом апоптоз вносит свой вклад, тогда как при естественном старении механизм образования одно и двунитевых разрывов ДНК иной. Morrison, Hof [71] в результате детальных исследований нейронов головного мозга при старении пришли к заключению, что хотя гибель этих клеток и сопровождает старение животных и человека, она не является причиной этого процесса. Главным для старческих изменений функционирования мозга является искажение, но не прекращение работы генов, чьи продукты обеспечивают взаимодействие нейронов в цепи. Evans, Burbach, Vanleeuwen [38] обнаружили, что в нейронах крыс с возрастом накапливаются повреждения ДНК и снижается репарационная активность. Однако все же следует отметить, что обширные изменения ДНК, такие как протяженные однонитевые пробелы, обнаруженные Zahn et al. [91] (эти данные не были подтверждены), едва ли могут рассматриваться как характерные признаки изменения генома при старении. Если таковые изменения и есть, то они скорее всего носят иной характер, причем точно не известно, когда они появляются.

Нами впервые было показано, что дефекты вторичной структуры ДНК возникающие как при естественном старении, так и при радиационном укорочении жизни, в терминальной стадии локализованы в относительно АТ- богатых областях генома [13]. Это невозможно без действия специального механизма, так как случайно возникающие дефекты вторичной структуры располагаются по ДНК равномерно.

Тот факт, что рассмотренные дефекты вторичной структуры ДНК обнаруживаются в терминальной фазе старения, а также то, что наименьшее их количество появляется в критических при старении нервных клетках, наводит на мысль, что их нельзя отнести к первичным событиям старения. Вероятнее всего к инициальному субстрату старения они отношения не имеют, а являются последствиями работы механизма старения в фазе реализации. По всей видимости, субстрат старения локализован в минорной фракции ДНК, не обнаруживаемой современными методами.

ЗАКЛЮЧЕНИЕ

Из сказанного очевидно, что настоящая работа по выяснению фундаментального механизма старения животных еще только начинается. На обсуждаемые проблемы можно посмотреть иначе, поставив вопрос следующим образом: что нужно сохранить в germ line, что бы обеспечить непрерывность смены поколений хотя бы в пределах одного вида. Ответ вполне ясен: возможность непрерывной передачи наследственной информации с помощью ДНК. Для этого ДНК постоянно в течение миллионов поколений в клетках germ line не должна терять способности к выполнению своих функций, в первую очередь репликации и транскрипции.