Смекни!
smekni.com

удк 629 067. 8 (стр. 3 из 18)

Wсл1max= lсл1/d пр из= 29,4/0,24=122 витка

Аналогично остальные слои.

Обмотка поместится в шести слоях.

Поверх обмотки наложим внешнюю изоляцию из лакоткани ЛШМС - 105-0,10 с 50%-ным перекрытием. Найдем диаметр отверстия:

dотв = dсл6dпр из - 4Dиз = 6,16 - 0,24 - 4 • 0,1 = 5,52 мм.

Видим, что диаметр отверстия вполне достаточен для продевания че­рез него провода с измеряемым током.

Важным условием функционирования трансформатора тока является обеспечение работы сердечника без захода в область насыщения. Чтобы определить, обеспечено ли выполнение данного условия, необходимо найти максимальную индукцию в сердечнике. Напомним, что данная формула справедлива для режима перемагничивания по симметричному циклу при прямоугольном входном воздействии с паузой на нуле. Ранее было принято q = 0,25. получаем:

Bmax = qUa2/ 2wfS= 0.25•8.2/2•610•400•10•10-5=0.042 Тл

Основываясь на библиографических данных для феррита 1500НМЗ, можем за­ключить, что сердечник трансформатора тока далек от насыщения.

Представляет интерес определить, насколько верно предположение об идеальности трансформатора тока, принятое выше. Чтобы ответить на этот вопрос, необходимо найти намагничивающий ток трансформатора тока и сравнить его с измеряемым током i1.

Найдем максимальное значение напряженности в сердечнике, подставив в нее m = 1500:

Hmax= Bmax/mo m=0.042/4p •1500•10-7 = 22,23 A

При w = 1 получим:

Im max = HmaxIср = 22,23•25,133•10-3=0,56 А

Полученное значение немного больше Ia1, что, в принципе, можно считать довольно хорошим результатом.

3.1.2 Проектирование выпрямителя

В преобладающем большинстве конструкций используется двухполупериодный выпрямитель, диоды которого включены по мостовой схеме. Рассчитать выпрямитель - значит правильно выбрать выпрямительные диоды и конденсатор фильтра, а также определить необходимое переменное напряжение, снимаемое для выпрямления с вторичной обмотки трансформатора. Исходными данными для расчета выпрямителя служат: требуемое напряжение на нагрузке Uн и потребляемый ею максимальный ток Iн.

а) По току нагрузки определяем максимальный ток, текущий через каждый диод выпрямительного моста:

Iд = 0,5СIн

Iд = 0,5 • 2,4 • 0,1 = 0,12 А

где: Iд - ток через диод, А;
Iн - максимальный ток нагрузки, А;
С - коэффициент, зависящий от тока нагрузки.

б). Подсчитываем обратное напряжение, которое будет приложено к каждому диоду выпрямителя:

Uобр = 1,5Uн,

Uобр=1,5•8,2=12,3 В

где: Uобр - обратное напряжение, В;
Uн - напряжение на нагрузке, В.

в) Выбираем диоды, у которых значения выпрямленного тока и допустимого обратного напряжения равны или превышают расчетные. Нам подходит диоды 2Д103А. Пригоден также выпрямительный блок КЦ417Б.

г) Определяем емкость конденсатора фильтра:

Сф = 3200Iн / UнKп,

Сф = 3200 •0,82 / 8,2 •0,05= 6,4 мкФ,

где: Сф - емкость конденсатора фильтра, мкФ;
Iн - максимальный ток нагрузки. мA;
Uн - напряжение на нагрузке, В;
Kп - коэффициент пульсации выпрямленного напряжения (отношение амплитудного значения переменной составляющей на выходе выпрямителя к среднему значению выпрямленного напряжения).

Конденсатор выбираем К52-9-100В-6,8мкФ.

3.1.3 Выбор ограничителя напряжения

При воздействии ЭМИ искусственного и естествен­ного происхождения могут возникать необратимые и обратимые повреждения в аппаратуре, которые связаны главным образом с электрическими пробоями элемен­тов, перегоранием цепей и контуров. Обратимые изме­нения (кратковременные отказы и сбои) связаны с по­явлением ложных сигналов в узлах и блоках, подавле­нием полезных сигналов, искажением информации.

Для защиты цепей аппаратуры и ее элементов от различного рода перегрузок по напряжению использу­ют газоразрядные и полупроводниковые ограничите­ли. К газоразрядным ограничителям относятся разряд­ники, к полупроводниковым — полупроводниковые ограничители напряжения, металлооксидные варисторы и полупроводниковые приборы общего применения.

По сравнению с другими классами ограничителей напряжения разрядники имеют весьма высокие напря­жения, большое значение допустимого тока и малые межэлектродные емкости, что позволяет использовать их для защиты цепей аппаратуры от ЭМИ искусствен­ного и естественного происхождения, когда энергия, выделяемая в ограничителе, достаточно велика. Но применение только одних разрядников из-за значитель­ного времени их срабатывания не решает проблемы защиты многих полупроводниковых приборов и микро­схем, поскольку для них недопустимы начальные вы­бросы напряжений, пропускаемые разрядником. Вели­чина выброса напряжения у разрядников в значитель­ной степени зависит от скорости нарастания фронта воздействующего импульса. При больших величина выбро­са напряжения может возрасти в 5..6 раз по сравне­нию со статическим напряжением возникновения раз­ряда. Этот недостаток разрядников в меньшей сте­пени проявляется у варисторов и совсем отсутствует у полупроводниковых ограничителей напряжения.

Полупроводниковые ограничители напряжения и варисторы выгодно отличаются от разрядников тем, что напряжение пробоя у них ниже напряжения ограниче­ния (у разрядников оно значительно выше напряже­ния поддержания разряда), поэтому при применении, полупроводниковых ограничителей защищаемые ими цепи не шунтируются после прохождения импульса тока переходного процесса, как это имеет место у разрядников. Наличие низкого напряжения поддержа­ния разряда у разрядников ограничивает их примене­ние для защиты цепей постоянного тока, в которых напряжение источника выше напряжения поддержания разряда. Полупроводниковые ограничители и варисто­ры имеют диапазон напряжений 0,7.. .2000 В, что по­зволяет использовать их для защиты различных по назначению радиотехнических цепей, в состав которых входят чувствительные к переходным процессам полу­проводниковые приборы и интегральные микросхемы.

Кроме специализированных ограничителей напряже­ния в качестве элементов защиты могут быть использо­ваны: ПП общего применения: импульсные диоды, диоды с барьером Шотки, p-i-n диоды, импульсные стабилит­роны, высоковольтные выпрямительные столбы, диоды с низкоомной базой, диоды на основе арсенида галлия и др. Полупроводниковые элементы защиты, а также варисторы и разрядники благодаря особенностям вольт - амперной характеристики (ВАХ) при отсутствии им­пульса напряжения практически не потребляют энергии в цепи, так как их сопротивление очень велико (0,1 ... 100 МОм) и, следовательно, практически не рассеи­вают дополнительной мощности. При возникновении импульса напряжения с амплитудой, превышающей по­роговое значение для данного элемента защиты, его сопротивление резко уменьшается (0,01 ... 10 Ом). В ре­зультате импульсное напряжение на защищаемой цепи ограничивается до заданного уровня. При этом ток протекает в основном через элемент защиты, минуя нагрузку, и достигает в ряде случаев сотни ампер. Однако средняя рассеиваемая мощность, выделяемая в ограничителе, невелика, так как длительность импуль­сов напряжения, возникающих в цепях при действии ЭМИ искусственного и естественного происхождения, не превышает десятков микросекунд. Поэтому элементы защиты, обладая большой импульсной рассеиваемой мощностью, имеют малые габариты и массу. Кроме то­го, они имеют большое быстродействие, что важно для защиты цепей при высоких скоростях нарастания им­пульсов напряжения, свойственных ЭМИ искусствен­ного происхождения.

Для обеспечения эффективной защиты цепей ап­паратуры от электрических перегрузок по напряжению е помощью ограничителей напряжений параметры и ха­рактеристики последних должны удовлетворять следу­ющим требованиям:

- технические характеристики и параметры ограничи­телей при отсутствии перегрузок по напряжению не должны влиять на характеристики функциональных бло­ков и устройств, в которых они используются;

- уровень напряжения во время действия импульса переходного процесса в точках подключения ограничи­теля должен быть как можно ближе к нормальному уровню напряжения, действующему до перегрузки;

- надежность ограничителя должна быть выше на­дежности блоков и устройств, которые нуждаются в защите;

- быстродействие ограничителей должно быть макси­мально возможным, чтобы обеспечить эффективную за­щиту при больших скоростях изменений напряжений пе­реходных процессов;

- максимально допустимые токи ограничителей долж­ны быть больше тока, создаваемого максимально воз­можным уровнем напряжения;

- диапазон рабочих напряжений ограничителей дол­жен быть достаточно широким;

- динамическое сопротивление в проводящем состоя­нии должно быть минимально возможным;

- параметры и характеристики ограничителей должны соответствовать требованиям по устойчивости к воз­действию механических, климатических и специальных факторов, предъявляемым к аппаратуре.

Проанализировав теоретический материал был выбран ограничитель напряжения 2С408А2.

Ограничитель напряжения кремниевый диффузионный средней мощности. Предназначен для защиты цепей аппаратуры постоянного и переменного токов от им­пульсных электрических перегрузок по напряжению. Выпускаются в металлостеклянном корпусе с гибки­ми выводами. Тип ограничителя указывается на корпу­се. Корпус в рабочем режиме служит положительным электродом (анодом). Масса прибора не более 2,3 г.