Смекни!
smekni.com

Совместное научно-производственное предприятие «Промэкс» Особенности построения и рекомендации по применению иутк «Гранит-микро». Часть Организация информационных обменов между пу и кп. Редакция 1, 20 (стр. 5 из 17)

3. Организация рабочих циклов в ИУТК «Гранит-микро».

3.1. Типы информационных циклов

В ИУТК «Гранит-микро» сообщения передаются в рабочих циклах, которые разделяются на информационные и служебные. Рабочий цикл состоит из тактов, число которых соответствует числу основных и вспомогательных сигналов сообщения.

Как указывалось, паузы между рабочими циклами являются активными и используются для диагностики работоспособности и качества ТЛС и синхронизации работы пунктов обмена информацией (ПОИ).

3.2. Компоненты рабочего цикла

Рабочие циклы разделяются на компоненты сообщения в соответствии с рекомендациями Х.25 МККТТ и протоколом HDLC.

В структуре систем с временным разделением сигналов, по определению, заложена необходимость ограничения времени передачи информационного сообщения.

Подчеркнем, что время, ограничивающее передачу сообщения, называется рабочим циклом. Так как в течение цикла необходимо передать множество сигналов, цикл делится на части – такты.


Ттакт =

, Тцикл = n ·
,
- тактовая частота (в Гц) передачи сигналов. Если передается двоичный сигнал (бит) - «1» или «0», скорость передачи равна
(бод).

Способ организации передачи информации в рабочем цикле называется протоколом передачи информации. Укажем несколько типов стандартных протоколов MODBUS, HDLC, TCP/IP, МЭК 870-5-101 (104).

3.2. Протокол передачи информации

Протокол передачи информации – сочетание отдельных компонентов. Синтезируем протокол передачи информации с учетом особенности структуры и вида ТЛС.

В ИУТК, как правило, несколько КП должны обмениваться информацией с одним или несколькими ПУ. Следовательно, в протокол передачи информации должны быть включены адреса отправителя и получателя (применительно к видам ПОИ – адреса КП (АКП) и ПУ (АПУ)). Запишем первые компоненты рабочего цикла.

Общепринята магистрально-модульная архитектура построения (ММАП) практически любых электронных устройств. ММАП характеризуется наличием внутренней магистрали, объединяющей все функциональные модули. По внутренней магистрали в модули подаются адресные, управляющие и информационные сигналы от контроллера магистрали (супервизора), а от выбранного для внутреннего информационного обмена модуля в магистраль подаются информационные сигналы и (при необходимости) сопровождающие их вспомогательные сигналы. Для примера ниже показана внутренняя структура устройства КП ИУТК «Гранит-микро»

Итак, в КП, ПУ или ЦППС контроллер – супервизор (блок задания режима работы) по внутренней магистрали – набору адресных, информационных и управляющих шин внутреннего интерфейса, сочленяется с модулями разнотипных каналов (не путать внутреннюю магистраль устройства с магистральным каналом связи КП-ПУ). Необходимость применения нескольких модулей одного вида объясняется тем, что требуемое число каналов может превышать информационные возможности одного функционального модуля.

Кроме информации от модулей, ПОИ может передавать различную служебную (дополнительную) информацию – признаки обнаруженной неисправности или отсутствия каких-либо модулей, квитанцию – подтверждение получения неискаженной информации, вызов данных, опрос состояния ПОИ и др.

Следовательно, информационные обмены должны разделяться на основные и служебные, а передаваемое сообщение должно содержать соответствующую компоненту – признак установленного режима работы (РР) –


В основном, информационном обмене необходимо не только указать вид информации – функциональный адрес (ФА), но и ту ее часть, которая передается в текущем рабочем цикле. Часть информации условно обозначим как номер группы (НГ). В качестве номера группы может быть использован код номера «места» подключения модуля к внутренней магистрали. Таким образом, определена еще одна (комбинированная) компонента рабочего цикла -

Суммируем уже установленные компоненты рабочего цикла, которые получили название заголовка или преамбулы:


Набор всех указанных компонент рабочего цикла позволяет адекватно расшифровать в приемнике переданную информацию. Собственно информацию рабочего цикла принято называть информационным полем сообщения -

Структура рассмотренной части рабочего цикла приведена ниже.


При реализации информационных обменов по достаточно протяженным каналам связи необходимо обеспечить защиту информации от помех. Подчеркнем, что на работу устройства влияют помехи не только в канале связи КП-ПУ, но и практически по всей трассе передачи информационных сообщений. Известно, что периферийные контролируемые пункты подвержены воздействию электрических и магнитных полей, интенсивность которых зачастую превышает мешающее действие помех в каналах связи. Утверждение о наличии помех по всей трассе доставки информации от передатчика приемнику должно быть учтено при формировании компонент рабочего цикла.

Для борьбы с помехами используют специальные, помехозащитные коды. Помехозащищенность связана с введением избыточности информационных сообщений. Избыточность определяется по отношению общего числа двоичных комбинаций кода и реально используемого для представления информации. Например, если к информационному байту – восьмиразрядному коду, добавить один дополнительный разряд так, чтобы сумма сигналов «1» в полученном девятиразрядном коде всегда была четной (или нечетной), избыточность (И) кода оказывается равной

И =

= 2

Избыточность характеризует кодовое расстояние (d) между двумя смежными разрешенными кодовыми комбинациями, т.е. число «шагов» от одной разрешенной комбинации к смежной. У приведенного выше кода «на четность» d=2. В одном «шаге» от разрешенной комбинации сформированного кода находится неразрешенная комбинация, в которой насчитывается вместо нечетного четное число сигналов «1» и наоборот. Приведенный избыточный код позволяет обнаружить однократное искажение (вернее, любое нечетное число искажений исходного кода). Помехозащитные свойства кода характеризуются минимальным числом обнаруживаемых искажений. Поэтому помехозащитный код «на четность-нечетность» обнаруживает однократное искажение кода. Наиболее употребительны следующие типы избыточных (помехозащитных) кодов:

- с повторением передачи. Этот класс кодов подразделяется на коды с инверсией повторно передаваемого сообщения, без инверсии и с условной инверсией, когда инверсия повторного сообщения ставится в зависимость от четности числа сигналов «1» в основном сообщении,

- Хемминга, в которых избыточные разряды кода формируются как дополнение до четного (нечетного) числа сигналов «1» в разных группах основных разрядов,

- «1 из n» - распределительный или позиционный код. В нем сигнал «1» должен формироваться только в одном разряде из «n»,

- циклические, которые образуются циклическим сдвигом базовой комбинации с учетом «образующего» полинома. Наиболее употребителен шестнадцатиразрядный образующий полином вида 215 + 212 + 25 + 1 (1001000000100001).

В ИУТК «Гранит-микро» используется комбинация из нескольких помехозащитных кодов. Например, код с защитой «на четность» дополняется кодом «с повторением», а код «с повторением» дополняется циклическим кодом.

Все используемые избыточные разряды кода сообщения образуют поле защиты сообщения –

Представим структуру рассмотренной части рабочего цикла


Ранее указывалось, что в ИУТК с временным разделением сигналов информационное сообщение невозможно правильно принять, если не зафиксировать начало сообщения. Следовательно, в протокол передачи данных должен быть введен маркер начала сообщения


Если предположить, что не все информационные сообщения имеют одинаковое число сигналов, то в протокол необходимо включить и маркер окончания сообщения

Итак, структура синтезированного рабочего цикла выглядит так: