Смекни!
smekni.com

Учебно-методическое пособие Кострома 2007 удк 519. 8 (075) (стр. 3 из 12)

1.2.6. Известно, что 20% всех приборов собирает специалист высокой квалификации, а 80% – средней квалификации. Надежность прибора, собранного специалистом высокой квалификации, равна 0,9; надежность прибора, собранного специалистом средней квалификации, равна 0,7. Взятый прибор оказался надежным. Найти вероятность того, что он собран специалистом высокой квалификации.

1.2.7. На сборку попадают детали с 3-х автоматов. Известно, что первый автомат дает 0,3% брака, второй – 0,2%, третий – 0,4%. Найти вероятность попадания на сборку бракованной детали, если с первого автомата поступило 1000, со второго – 2000 и с третьего – 2500 деталей.

1.2.8. Студент, явившийся на экзамен последним, берет наугад один из оставшихся шести билетов. Вероятности того, что он получит положительную оценку, отвечая на каждый из этих билетов, следующие: 0,5; 0,5; 0,6; 0,7; 0,8; 0,9. Какова вероятность того, что студент получит положительную оценку?

1.2.9. Электролампы изготавливаются на 3-х заводах. Первый завод производит 45% общего количества электроламп, второй – 40%, третий – 15%. Продукция первого завода содержит 70% стандартных ламп, второго – 80%, третьего – 81%. В магазин поступает продукция всех трех заводов. Какова вероятность того, что купленная в магазине лампа окажется стандартной?

1.2.10. Для сигнализации о том, что режим автоматической линии отклоняется от нормального, используется индикатор. Он принадлежит с вероятностями 0,2; 0,3 и 0,5 к одному из трех типов, для которых вероятности срабатывания при нарушении нормальной работы линии равны соответственно 1,0; 0,75 и 0,4. От индикатора получен сигнал. К какому типу вероятнее всего принадлежит индикатор?

1.2.11. Для участия в отборочных соревнованиях выделено 5 студентов из первой группы, 4 – из второй, 6 – из третьей группы. Вероятности того, что студент первой, второй и третьей группы попадет в сборную команду, соответственно равны 0,7; 0,9 и 0,7. Выбранный наудачу студент в итоге соревнования попал в сборную. Определить, к какой из групп вероятнее всего принадлежит этот студент.

1.2.12. На склад поступает продукция трех фабрик. Причем продукция первой фабрики составляет 20%, второй – 46%, третьей 34%. Известно также, что средний процент нестандартных изделий для первой фабрики равен 3%, для второй – 2% и для третьей – 1%. Найти вероятность того, что наудачу взятое изделие произведено на первой фабрике, если оно оказалось нестандартным.

1.2.13. Страховая компания разделяет застрахованных клиентов по классам риска: I класс – малый риск, II класс – средний риск, III класс – большой риск. Среди этих клиентов 50% – первого класса риска, 30% – второго, 20% – третьего. Вероятность необходимости выплачивать страховое вознаграждение для первого класса равна 0,01; второго – 0,03; третьего – 0,08. Какова вероятность того, что:

а) застрахованный клиент получит денежное вознаграждение за период страхования;

б) застрахованный клиент, получивший денежное вознаграждение, относится к группе малого риска?

1.2.14. В данный район изделия поставляются тремя фирмами в соотношении 5:8:7. Среди продукции первой фирмы стандартные изделия составляют 90%, второй – 85%, третьей – 75%. Найти вероятность того, что:

а) приобретенное изделие окажется нестандартным;

б) приобретенное изделие оказалось стандартным.

Какова вероятность того, что стандартное изделие изготовлено третьей фирмой?

1.3. Повторные независимые испытания

Формула Бернулли

1.3.1. Производится 6 выстрелов по цели. Вероятность попадания в цель при каждом выстреле равна 0,4. Найти вероятность того, что произойдет:

а) одно попадание в цель;

б) не менее 4-х попаданий;

в) хотя бы одно попадание.

1.3.2. Вероятность выигрыша по одному билету лотереи равна 1/7. Какова вероятность того, что лицо, имеющее 6 билетов:

а) выиграет по 2-м билетам;

б) не выиграет по двум билетам?

1.3.3. Что вероятнее, выиграть у равносильного противника: одну партию из двух или две из четырех?

1.3.4. Монету подбрасывают 6 раз. Какова вероятность того, что она упадет гербом вверх не больше 3-х раз?

1.3.5. На автобазе имеется 12 автомашин. Вероятность выхода на линию каждой из них равна 0,8. Найти вероятность нормальной работы автобазы в ближайший день, если для этого необходимо иметь на линии не менее 10 автомашин.

1.3.6. Отмечено, что в городе А в среднем 10% заключенных браков в течение года заканчиваются разводом. Какова вероятность того, что из 8 случайно отобранных пар, заключивших брак, в течение года:

а) ни одна пара не разведется;

б) разведутся 2 пары?

1.3.7. В течение гарантийного срока 20% телевизоров требуют ремонта. Найти вероятность того, что в течение гарантийного срока из 6 телевизоров:

а) не более одного потребует ремонта;

б) хотя бы один потребует ремонта.

1.3.8. В семье 10 детей. Считая вероятности рождения мальчика и девочки равными между собой, определить вероятность того, что в данной семье:

а) не менее 3-х мальчиков;

б) не более 3-х мальчиков.

1.3.9. Вероятность попадания в цель при стрельбе из орудия равна 0,6. Производится по одному выстрелу одновременно из 3-х орудий. Цель поражена, если в нее попадут не менее двух орудий. Найти вероятность:

а) поражения цели;

б) промаха одним или двумя орудиями.

1.3.10. Вероятность выбора отличника на факультете равна 1/7; из 28 студентов группы наудачу вызывают троих студентов. Определить вероятность всех возможных значений числа отличников, которые могут оказаться среди вызванных трех студентов.

Формула Пуассона

Если число испытаний n велико, а вероятность p наступления события A в каждом испытании достаточно мала (p<0,1), причем их произведение np незначительно ( λ=np≤10), то вероятность Pn(k) можно приближенно найти по формуле Пуассона

.

Замечание. Значения функции Пуассона находятся по таблице (см. Приложение 1).

1.3.11. На потоке обучаются 1460 студентов. Какова вероятность того, что 1 мая – день рождения 8 студентов вуза?

1.3.12. Вероятность того, что пассажир опоздает на поезд, равна 0,01. Найти вероятность того, что опоздает 8 пассажиров из 500.

1.3.13. АТС в среднем за час получает 300 вызовов. Найти вероятность того, что за данную минуту она получит точно 2 вызова.

1.3.14. Радиоаппаратура состоит из 1000 электроэлементов. Вероятность отказа одного элемента в течение одного года работы равна 0,001 и не зависит от состояния других элементов. Какова вероятность отказа не менее 2-х элементов?

1.3.15. В банк отправлено 4000 пакетов денежных знаков. Вероятность того, что пакет укомплектован неверно, равна 0,0001. Найти вероятность того, что при проверке будет обнаружено:

а) 3 ошибочно укомплектованных пакета;

б) не более 3-х пакетов.

1.3.16. Вероятность допустить ошибку при наборе текста из 1200 знаков, равна 0,004. Найти вероятность того, что при наборе будет допущена хотя бы одна ошибка.

Локальная формула Муавра-Лапласа

Если вероятность p наступления события A в каждом испытании постоянна и отлична от 0 и 1, то вероятность Pn(k)

Замечание. Имеются таблицы для функции φ(x) (см. Приложение 2).

1.3.17. Приняв вероятность рождения мальчика равной 0,515, найти вероятность того, что среди 80 новорожденных 42 мальчика.

1.3.18. Известно, что из каждых 100 студентов вуза 85 костромичи. Какова вероятность того, что из 400 студентов 340 – костромичи?

1.3.19. Вероятность отказа каждого прибора при испытании равна 0,2. Приборы испытываются независимо друг от друга. Что вероятнее: отказ 10 приборов при испытании 80 или отказ 15 при испытании 120?

1.3.20. Бюффон бросил монетку 4040 раз. При этом герб выпал 2048 раз. С какой вероятностью можно было ожидать этот результат?

1.3.21. Средний процент нарушения работы кинескопа телевизора в течение гарантийного срока равен 12. Найти вероятность того, что из 46 наблюдаемых телевизоров более 36 выдержат гарантийный срок.

Интегральная формула Муавра-Лапласа

Если вероятность p наступления события А в каждом испытании постоянна и отлична от 0 и 1, то вероятность того, что число k наступления события А в n независимых испытаниях при достаточно большом числе n приближенно равна

Формула применима при npq≥20.

Замечание. Значения функции Φ(x) берутся из таблицы (см. Приложение 3). Φ(-x) = -Φ(x).

1.3.22. Найти вероятность того, что в партии из 1000 изделий число изделий высшего сорта заключено между 580 и 630, если известно, что доля изделий высшего сорта продукции завода составляет 69%.

1.3.23. Найти вероятность того, что число мальчиков среди 1200 новорожденных содержится в промежутке от 550 до 650 включительно. Вероятность рождения мальчика p=0,515.

1.3.24. Игральную кость бросают 800 раз. Какова вероятность того, что число очков, кратное 3, выпадет не меньше 260 и не больше 274 раз?

1.3.25. При штамповке металлических клемм получается в среднем 90% годных. Найти вероятность того, что среди 900 клемм будет от 790 до 820 (включительно) годных.

1.3.26. С вероятностью 0,8 орудие при выстреле поражает цель. Произведено 1600 выстрелов. Какова вероятность того, что при этом произошло не менее 1200, но не более 1300 попаданий?

Контрольная работа по теме «Случайные события»

Вариант I

1. В организации работают 12 мужчин и 8 женщин. Для них выделено 3 премии. Определить вероятность того, что премию получат: