Такую конструкцию включают в рабочее состояние путем подклинивания или натяжения винтовыми устройствами.
а - усиление участка плиты перекрытия; б - усиление ригеля рамной конструкции; в - усиление железобетонной конструкции присоединенным к ней металлом; 1 - уголок; 2 - швеллер; 3 - хомуты; 4 - металлический корсет
Рисунок 9.21 - Вариант увеличения несущей способности железобетонной конструкции прокатным металлом
9.3.16 Все большее применение находят специальные клеящие средства вследствие того, что клеящие средства быстро твердеют, обладают высокой прочностью и адгезией (рисунок 9.23). При ремонте трещин клеевыми составами для их заполнения используют несложное оборудование и простые приспособления в виде герметизирующих лент и армирующих накладок (шпонок). Следует отметить, что в последнее время разработано большое число новых клеящих средств, однако в восстановительных работах следует использовать только апробированные средства, у которых должны сочетаться их характеристики по прочности и гарантированной долговечности.
а - усиление с помощью балки; б - усиление шпренгельной конструкцией; в - усиление разгружающими рамами; 1 - клин; 2 - балка; 3 - шпренгель; 4 - разгружающая рама
Рисунок 9.22 - Усиление железобетонной конструкции самостоятельной металлоконструкцией
а - усиление конструкции заполнением трещины и пустот эпоксидным клеем; б - усиление с использованием полимерных армированных шпонок; 1 - трещина; 2 - отверстие для штуцера; 3 - герметик; 4 - полимерные армированные шпонки
Рисунок 9.23 - Ремонт и усиление железобетонной конструкции с помощью клеящих средств
9.4.1 Усиление металлических конструкций осуществляют с соблюдением следующих правил:
а) стальные и алюминиевые конструкции вследствие высокой прочности материала и способности к развитию пластических деформаций отличаются повышенной надежностью и сейсмостойкостью. Естественно, эта характеристика относится к конструкциям и сооружениям, грамотно спроектированным и качественно выполненным в натуре. В противном случае разрушение при экстремальных нагрузках неизбежно.
Следует отметить, что при нарушении правил эксплуатации стальных конструкций повреждение и даже их разрушение подготавливается, причем довольно быстро, коррозией металла. В этом плане многие алюминиевые конструкции меньше подвержены коррозионному воздействию;
б) необходимо иметь в виду, что серьезные повреждения в металлоконструкции часто не бросаются в глаза и обнаружить их можно лишь путем осмотра с близкого расстояния. Особенно это относится к узлам и стыковым соединениям. Поэтому обследование металлоконструкций должно выполняться специалистами и с большой тщательностью, так как металл, как правило, используется в наиболее ответственных конструкциях, разрушение которых ведет к особо тяжелым последствиям. В зданиях и сооружениях - это несущий каркас и конструкции покрытия;
в) усиление и восстановление металлических конструкций в сейсмических районах должны выполняться по проекту, разработанному квалифицированными специалистами. Восстановительные работы в простейших случаях могут быть проведены путем воссоздания ранее существовавшей конструкции с использованием типовых решений восстановления и рекомендуемых способов усиления. Металлоконструкция перед восстановительными работами должна быть максимально разгружена.
Перед принятием решения о способе восстановления конструкции используемый металл должен быть проверен на свариваемость по химическому составу, и определены его прочностные характеристики. При несвариваемости металла следует предусматривать соединение элементов конструкции на болтах;
г) работы по восстановлению и усилению металлических конструкций, как правило, менее трудоемки, чем аналогичные работы для каменных и железобетонных объектов, но к их выполнению должны привлекаться опытные рабочие монтажники;
д) обгоревшие металлоконструкции к дальнейшей эксплуатации не допускаются, а металл после их демонтажа в строительстве не должен использоваться.
9.4.2 Металлические конструкции благодаря высокой прочности материала отличаются небольшими сечениями элементов и обычно сильно напряжены. Поэтому даже небольшие отклонения от проектных геометрических размеров и погнутость элементов недопустимы, так как создают дополнительные поля напряжений. Некачественный монтаж, в том числе мелкие ошибки в конструировании, ведут к образованию концентрации напряжений в определенных точках или зонах, а при сейсмическом воздействии влияние этих факторов усугубляется. Кроме того, следует иметь в виду, что при современной методике расчета в отдельных зонах или узлах материал металлоконструкций может работать на пределе расчетных характеристик по прочности.
9.4.3 Вследствие небольшого сечения элементов и высокого в них напряжения, наиболее опасным предельным состоянием в металлических конструкциях обычно является потеря устойчивости. Такой характер деформирования может иметь место как в масштабах конструкции в целом, так и в отдельном элементе, и в локальной зоне элемента или узла. Поэтому наиболее общим мероприятием при усилении металлоконструкции должны быть различные меры по повышению ее устойчивости.
9.4.4 В отличие от прочих конструкционных материалов, применяемых в строительстве, металл (сталь и алюминий) в одинаковой мере хорошо сопротивляется растяжению, сжатию и сдвигу. Металл способен к развитию значительных пластических деформаций, которые существенно повышают несущую способность грамотно спроектированной конструкции, в частности, при сейсмическом воздействии. Эти деформации способствуют релаксации высоких напряжений и перераспределению усилий в статически неопределимых системах и зонах, в том числе в узлах ферм и рам. Следует также отметить, что пластические деформации уменьшают устойчивость сильно сжатых элементов.
9.4.5 В узлах и стыках конструкции существует обычно сложное напряженное состояние. При нарушении технологии сварки здесь, помимо нежелательной концентрации термических напряжений, могут возникнуть зоны с хрупким состоянием металла и, как следствие, хрупкое разрушение, например, стыка.
Хрупкому разрушению обычной стали способствует также низкая температура, поэтому в северных районах необходимо применять металл специальных марок.
9.4.6 Как правило, наибольшие напряжения концентрируются в поверхностном слое элементов металлоконструкции. Поэтому даже поверхностные их повреждения недопустимы, а в эксплуатационном состоянии конструкции должны быть надежно защищены от коррозии.
9.4.7 Сталь является хорошим конструкционным материалом и, кроме того, в инженерной практике накоплен большой опыт проектирования и эксплуатации металлических конструкций. Тем не менее, аварии случаются и с ними, так как конструкции из металла, в отличие от железобетонных и каменных, проектируются, как правило, статически определимыми. Поэтому у них сравнительно скромный резерв в перераспределении усилий, например, локальные повреждения (выход из строя одного из элементов или одной связи) влекут за собою потерю несущей способности всей конструкции, а если она является основным несущим элементом здания и сооружения, то может разрушиться и весь объект. Необходимо также напомнить и о низком нормативном «коэффициенте запаса» в современных металлоконструкциях, который принят таким ввиду сравнительно высокой однородности этого строительного материала.
9.4.8 Основные причины, приводящие к разрушению металлоконструкций, - это дефекты монтажа или изготовления, использование металла с характеристиками ниже проектных значений, ошибки проекта и, главным образом, неполный учет возможных нагрузок и недостаточная система конструктивных связей. Например, 60 % аварий происходит во время строительства, когда не все элементы конструкции собраны и замкнуты в стыках и узлах.
Статистика следующим образом оценивает факторы (непосредственные причины), вызвавшие разрушение металлоконструкций:
потеря устойчивости | — | 41 %; |
разрушение сварного соединения | — | 23,8 %; |
разрушение по основному металлу | — | 22,2 %; |
другие причины | — | 13 %. |
При землетрясении металлоконструкции ведут себя, как правило, надежно. В случае обрушения конструкции, рассчитанной на реальное сейсмическое воздействие, следует причиной этого события рассматривать не землетрясение, а дефекты конструирования или монтажа.
9.4.9 Понятие потери устойчивости очень разнообразно, но основной причиной является недостаточная жесткость сжатого элемента конструкции в плоскости, перпендикулярной действующему усилию. В результате этого происходит не предусмотренная расчетом деформация элемента, увеличиваются краевые напряжения, процесс деформации развивается, в результате чего элемент выключается из работы или разрушается. На рисунке 9.24 показана местная потеря устойчивости в виде смятия стенки цилиндрической колонны каркаса здания с образованием гофра на стенке оболочки от изгибающего момента, превышающего предельное значение момента сопротивления сечения колонны, а также показана потеря формы поперечного сечения двутавровой балки при действии на нее сосредоточенной силы без местного усиления полки двутавра, предусмотренного нормами.