Смекни!
smekni.com

Вданной работе рассмотрены вопросы выбора и расчета параметров системы управления электроприводом, способствующей улучшению технологического процесса бурения (стр. 5 из 5)

K = (bnrD – bn)/(KωKumKαdbn),

где bnr – статическая ошибка разомкнутой системы регулирования тиристорного привода (в %) при изменении напряжения питания преобразователя и момента нагрузки двигателя, если частота фиксированная ;

bn – требуемая статическая точность (в %) при регулировании регулировании скорости (по отклонению) в диапазоне D;

Kαd – коэффициент передачи асинхронного двигателя 1/(Вс)

Для уменьшения статической ошибки применяют ПИ-регулятор:

WПИ3(р) =

.

Предположив, что для приводов с умеренной динамикой динамикой, к которым относится данный привод, модуль потокосцепления

= 1 изменяется не столь значительно, получим передаточную функцию разомкнутого контура регулирования:

Ww’ (p) =

.

При настройке на технический оптимум имеем:

K6 =

где TEM =

- электромеханическая постоянная времени.

Контур регулирования скорости с ПИ-регулятором может настраивается по условиям симметричного оптимума (при ТEM > 4Ta):

K6 =

;
,

Передаточная функция контура по управляющему воздействию на холостом ходу МС = 0 (IC = 0) получается в виде:

Ww(p) =

После вычислений получили настройки регуляторов системы управления:

Tф = 1.24 с Kw = 9.8 10 –2 BC

Kф = 0.6 Kdi = 2.16 10 –2 B/A

Ti = 0.015 Kad = 0.268 1/BC

Ki = 12.65 MП =73 HM

bп = 5 % Kdf = 4.68 1/c

bпу = 10 % Ф0 = 1.068 Вб

Д = 10

Tm = 0.0033 c

CM =4.5

Kим = 38

ПИ – регулятор потока:

;

ПИ – регулятор тока i2:

;
,

Коэффициент передачи ПИ-регулятора по условию технического оптимума:

Krw =10.045

Параметры ПИ-регулятора скорости по условию технического оптимума:

;
,

Параметры ПИ-регулятора скорости по условию симметричного оптимума:

;

Для устранения перерегулирования скорости привода, обусловленного наличием формирующего члена в числителе передаточной функции на вход контура регулирования скорости включается фильтр первого порядка (задатчик эффективности) с передаточной функцией:

WФ(p) =

, где ТФ = 4ТТ

В этом случае переходные процессы в приводе ТП-Д с двухкратно - интегрирующей системой подчиненного регулирования характеризуется следующей передаточной функцией:

Wwм(р) =

Расчет переходных процессов привода переменного тока с подчиненым

регулированием по методике, принятой в приводе постоянного тока, применим без ограничений в системах векторного управления. Для традиционных частотных систем методика дает удовлетворительные результаты в случае умеренной динамики привода, практически при времени переходного процесса, соизмеримом с длительностью пуска данного асинхронного двигателя:

tn=

При более высоком темпе разгона двигателя вид переходного процесса отличается от расчетного, так как в этом случае уровень главного потокосцепления не остается постоянным и снижается.

Появляется провалы момента, что приводит к значительному снижению электромагнитного момента двигателя.

Список литературы:

1.Алексеев В.В., Дартау В.А., Павлов Ю.П. “Элементы системы управления частотным приводом с подчиненным регулированием”

5.Столяров И.М., Слепцова З.Б. “Частотное регулирование машин переменного тока для рудничных электроприводов”

6.Рудаков В.В., Столяров И.М., Дартау В.А., “Асинхронные электроприводы с векторным управлением “

8.Сандлер, Сорбатов, Чиликин “Основы теории электопривода”