Смекни!
smekni.com

Учебно-методическое пособие Рекомендовано методической комиссией механико-математического факультета для студентов ннгу, обучающихся по направлению подготовки 010500 «Прикладная математика и информати (стр. 2 из 16)

Применение такой системы МВН, которую в дальнейшем будем называть методом конечных элементов (МКЭ), предполагает деление исследуемой области системой непересекающихся подобластей (конечных элементов), в каждой из которых осуществляется аппроксимация искомых функций с помощью простейших степенных полиномов. В результате существенно упрощается сам выбор базисных функций, удовлетворяющих заданным краевым условиям, появляются широкие возможности исследования областей, имеющих нерегулярные границы, улучшается структура и обусловленность результирующей системы.

Следует иметь в виду, что для задач, допускающих вариационную формулировку исходных уравнений, идентичные МВН схемы МКЭ могут быть получены в рамках известных вариационных методов. В частности, в первых работах, определивших появление МКЭ, этот метод трактовался либо как разновидность классического вариационного метода Релея-Ритца с локальным заданием базисных функций, либо как разновидность вариационно-разностного метода. Поэтому МКЭ можно рассматривать как общий метод дискретизации непрерывных краевых задач, имеющий непосредственную связь с МВН и классическими вариационными методами, использующими базисные функции для аппроксимации неизвестных функций, а также с конечно-разностными методами, основанными на вариационной формулировке исходных уравнений.

Вобрав в себя лучшие качества конечно-разностных методов, МКЭ имеет перед ними определенные преимущества, обеспечивая возможность свободного размещения узловых точек и сгущения их в местах высокого градиента функций, возможность одновременного использования в рамках единой расчетной схемы конечных элементов различной сложности и мерности. Кроме того, наличие разрывов в геометрии конструкции нисколько не затрудняет анализ таких конструкций МКЭ, что делает этот метод весьма перспективным для исследования сложных конструктивных образований.

В настоящее время МКЭ признается одним из наиболее универсальных методов решения прикладных задач математической физики, успешно используемых для математического моделирования в области прочности, аэрогидродинамики, теплофизики.

Предлагаемое учебное пособие посвящено изложению основ перечисленных методов дискретизации и иллюстрации их применения для двух классов задач:

-задач стационарной теплопроводности, на примерах решения которых удается наиболее просто и наглядно продемонстрировать основные принципы построения численных решений;

-задач теории упругости, являющихся наиболее сложными задачами математической физики, и требующих для построения численных решений привлечение более широкого набора вычислительных средств.

В первой главе пособия рассмотрены постановка задач и основные уравнения теории упругости. Приведена система дифференциальных уравнений в частных производных и краевых условий для функций перемещений, описывающих упругое равновесие деформируемых систем. Рассмотрены основные соотношения и совокупность уравнений, описывающих распределение температур в изотропных теплопроводящих средах при различных граничных условиях. Дано описание способов построения конечно-разностных аппроксимаций производных различных порядков и рассмотрены вопросы применения МКР для решения одномерных задач.

Вторая глава посвящена изложению основ МВН с использованием базисных функций, определенных на всей области рассматриваемой задачи. На примерах решения задач теплопроводности рассмотрены различные варианты аппроксимации дифференциальных уравнений на основе различных систем весовых функций и базисных функций, удовлетворяющих и неудовлетворяющих априори заданным краевым условиям. Рассмотрена слабая формулировка МВН для задач теплопроводности и теории упругости.

Третья глава содержит описание основ МКЭ, как специальной формы МВН с кусочным определением базисных функций. Рассмотрены особенности задания локальных базисных функций в МКЭ и применения их для аппроксимации дифференциальных уравнений задач теплопроводности и теории упругости.

Четвертая глава посвящена вопросам построения базисных координатных функций в МКЭ. Сформулированы основные требования к таким функциям, обеспечивающие сходимость численных решений. Рассмотрены некоторые способы построения базисных функций в элементах различной конфигурации и пространственной мерности. Приведены основные сведения об искривленных изопараметрических элементах и применении для вычисления их жесткостных характеристик схем численного интегрирования.

1. Общая характеристика уравнений теории упругости и теплопроводности. Метод конечных разностей

1.1. Уравнения теории упругости

Математическая теория упругости изучает количественные соотношения, характеризующие деформации или внутренние относительные смещения в твердом теле при заданных внешних воздействиях, в виде объемных сил, распределенных по объему тела V, а также поверхностных сил и граничных перемещений, заданных на поверхностях

и
, соответственно.

В теории упругости тело рассматривается как непрерывная сплошная среда, для которой считаются справедливыми гипотезы упругости (способности тела полностью восстанавливать свою форму после устранения причин, вызвавших деформацию), однородности (независимости свойств материала в пределах рассматриваемого объема тела) и линейной зависимости между возникающими в теле напряжениями и деформациями.

Пусть некоторое тело, занимающее объем V, ограниченный поверхностью

, находится в условиях статического равновесия при постоянной температуре Т=const. под действием объемных сил
, поверхностных сил
, а также граничных перемещений
, заданных на части поверхности
. В условиях перечисленных воздействий точки тела
получают перемещения
, удовлетворяющие условию

(1.1)

Кроме того, за счет смещения отдельных точек относительно друг друга, в теле возникнут деформации, характеризуемые симметричным тензором 2ого ранга

и связанные с перемещениями точек тела
известными дифференциальными соотношениями.

В случае если перемещения и деформации в теле малы, то эти соотношения линейны и имеют вид

. (1.2)

В литературе зависимости (1.2) известны как соотношения Коши. В матричной форме эти соотношения можно представить в виде

, (1.3)

где

- векторы компонент тензора
деформаций (в силу симметрии тензора в вектор включены лишь 6 независимых компонентов, причем сдвиговые компоненты приняты в виде
) и
перемещений в точке

(1.4)

[d] - матричный дифференциальный оператор

. (1.5)

Появление деформаций в теле в свою очередь вызывает появление в нем силовых полей, характеризуемых тензорным полем напряжений

. В упругом теле напряжения связаны с деформациями известными соотношениями упругости (обобщенный закон Гука):

. (1.6)

В общем случае число независимых компонент тензора

(с учетом симметрии тензоров
) равно 21. В случае изотропных тел число независимых величин, определяющих компоненты
, сокращается до 2

, (1.7)

где e - шаровая составляющая тензора деформации

,

- упругие постоянные Ламе (
- модуль деформации сдвига)