Возможность генерации одинаковой хэш-функции для двух различных документов. Такое событие называется "коллизией" и надежный алгоритм хэш-функции должен противостоять такого рода "неприятностям".
Главным условием правильного функционирования компьютерной системы является обеспечение защиты от вмешательства в процесс обработки информации тех программ, присутствие которых в компьютерной системе не обязательно. Среди подобных программ, в первую очередь, следует упомянуть компьютерные вирусы. Однако имеются вредоносные программы еще одного класса. От них, как и от вирусов, следует с особой тщательностью очищать свои компьютерные системы. Это так называемые программные закладки, которые могут выполнять хотя бы одно из перечисленных ниже действий:
- Вносить произвольные искажения в коды программ, находящихся в оперативной памяти компьютера (программная закладка первого типа);
- Переносить фрагменты информации из одних областей оперативной или внешней памяти компьютера в другие (программная закладка второго типа);
- Искажать выводимую на внешние компьютерные устройства или канал связи информацию, полученную в результате работы других программ (программная закладка третьего типа).
Существуют 4 основных способа воздействия программных закладок на цифровую подпись:
- искажение входной информации (изменяется поступающий на подпись электронный документ);
- искажение результата проверки истинности цифровой подписи (вне зависимости от результатов работы программы цифровая подпись объявляется подлинной);
- навязывание длины электронного документа (программе цифровой подписи предъявляется документ меньшей длины, чем на самом деле, и в результате цифровая подпись ставится только под частью исходною документа);
- искажение программы цифровой подписи (вносятся изменения в исполняемый код программы с целью модификации реализованного алгоритма).
Поскольку давать конкретные оценки возможностей потенциальных мозговых ресурсов взломщика системы цифровой подписи - дело весьма сложное и неблагодарное, мы будем просто исходить из предположения, что он располагает полной информацией о наилучших известных мировой науке методах решения данной задачи.
Далее, если взломщик располагает вычислительной системой общей мощностью, скажем, 1 миллиард (109) операций в секунду, а это мощность современного суперкомпьютера типа Cray-3, то
- за сутки непрерывной работы такой системы может быть решена задача сложностью около 100 триллионов (или 1014) операций,
- за месяц - около 3.1015,
- за год - около 3.1016,
- за десять лет - около 3.1017,
- за тридцать лет - около 1018 операций.
Таким образом, даже если допустить, что потенциальный взломщик цифровой подписи располагает вычислительной системой, эквивалентной по мощности тысяче (103) суперкомпьютеров типа Cray-3, на выполнение вычислений объемом 1021 операций ему потребовалось бы не менее тридцати лет непрерывной работы системы, а значит, цифровая подпись с надежностью не менее 1021 может считаться практически неподделываемой.
В этом месте автору обычно задают вопрос: "А что, если специальным службам известны более быстрые методы решения задачи фальсификации цифровых подписей?" В настоящее время ответ на него оказывается довольно простым. Если вы боитесь, что обычно предлагаемого при длине ключей 64 байта запаса надежности в 1018-1021 недостаточно, применяйте алгоритмы с более длинными ключами. Современные процессоры класса Intel 486 и Pentium позволяют за доли секунды вычислять и проверять цифровые подписи с ключами длиной до 512 байт, а стойкость большинства широко применяемых методов цифровой подписи при такой длине ключей заведомо превосходит все разумные требования (более чем 1050).
Итак, мы видим, что современные общепризнанные принципы построения системы цифровой подписи просты и изящны:
- методы вычисления и проверки цифровых подписей всех пользователей системы одинаковы, всем известны и основываются на широко известных математических задачах,
- методы вычисления ключей проверки цифровых подписей из индивидуальных ключей подписывания одинаковы для всех и хорошо известны, их надежность также основывается на широко известных математических задачах,
- индивидуальные ключи подписывания выбираются самими пользователями по случайному закону из множества всех возможных ключей,
- при конкретном алгоритме цифровой подписи его стойкость может быть оценена без привлечения какой-либо "закрытой" информации на основе только известных математических результатов и разумных допущений о вычислительных мощностях потенциального взломщика, поскольку она базируется на общедоступных теоретических результатах по оценке сложности широко известных вычислительных задач.
При правильном хранении закрытого ключа его владельцем – нет. Выполняйте рекомендации по хранению и использованию ключа, содержащиеся в документации к клиентскому комплекту – и вы будете гарантированы от подделки вашей ЭЦП. На сегодняшний день на Земле не существует вычислительных мощностей, способных в сколько-нибудь приемлемые сроки взломать криптографию ЭЦП, и в ближайшие десятилетия это будет также невозможно.
В 1995 году был принят Федеральный Закон "Об информации, информатизации и защите информации". В пункте 3 статьи 5 говорится, что юридическая сила документа может подтверждаться электронной цифровой подписью. При этом "юридическая сила электронной цифровой подписи признается при наличии в автоматизированной информационной системе программно-технических средств, обеспечивающих идентификацию подписи установленного режима их использования". Однако "право удостоверять идентичность электронной цифровой подписи осуществляется на основании лицензии" (п.4).
Как показывает практика, алгоритмы с открытым ключом очень неэффективны из-за низкой скорости обработки большого объема данных. Для уменьшения времени на генерацию и проверку подписи, а также для сокращения ее размера применяется специальный механизм, называемый хэш-функцией (hash function), который является отображением подписываемого сообщения в строку фиксированной длины, много меньшей размера самого сообщения. Вместо подписи самого документа подписывается хэш-функция этого документа. Аналогичным образом проверяется подпись не самого документа, а его хэш-функции.
ГОСТ 34.10. Стандарт на электронную подпись ГОСТ 34.10 был опубликован Госстандартом РФ в мае 1994 года и вступил в действие с 1 января 1995 года. В предварительном варианте он был введен как ведомственный стандарт на цифровую подпись ЦБ РФ и использовался в этом качестве с сентября 1993 года по декабрь 1994 года. Алгоритмы вычисления и проверки подписи в ГОСТ 34.10 устроены аналогично алгоритму DSA, но хэширование выполняется другим, существенно более медленным способом. К сожалению, разработчики допустили целый ряд ошибок, которые есть даже в официальном тексте стандарта. Поэтому при реализации следует быть внимательным и не всегда следовать формальному тексту.
В России в 1994 году были приняты стандарты ГОСТ Р 34.10-94 "Криптографическая защита информации. Процедуры выработки и проверки электронной цифровой подписи на базе асимметричного криптографического алгоритма" и ГОСТ Р 34.11-94 " Криптографическая защита информации. Функция хэширования". Чем могут помочь пользователю данные стандарты? Во-первых, они должны гарантировать криптостойкость, т.е. надежность реализованных по ним алгоритмов. Во-вторых, применение стандартов должно обеспечить совместимость продуктов различных производителей. Однако есть и проблемы при использовании принятых стандартов.
Стандарты ГОСТ Р 34.10-94 и ГОСТ Р 34.11-94 описывают лишь процедуры выработки и проверки ЭЦП и хэш-функции. За пределами их рассмотрения остается такой важный вопрос, как распространение и генерация ключей, защита от несанкционированного доступа к ключевой информации и т.д. Поэтому зачастую продукты, реализующие один и тот же стандарт, несовместимы между собой. На российском рынке средств защиты информации существует несколько известных систем, в которых реализованы указанные стандарты (Верба-О, Криптон и т.д.), но между собой эти системы не совместимы.
Как уже отмечалось, использование стандарта должно гарантировать, что документы, подписанные при помощи ГОСТ Р 34.10-94, теоретически не могут быть подделаны за приемлемое для злоумышленника время. Однако на практике дело не всегда обстоит таким образом. Связано это с тем, что стандарт описывает алгоритм математическим языком, в то время как пользователи сталкиваются уже с его реализацией. А при реализации могут быть допущены различные ошибки, которые сводят на нет все достоинства алгоритма. Кроме того, эффективное применение систем ЭЦП зависит от их правильной эксплуатации. Например, хранение секретных ключей для генерации цифровой подписи на доступном всем жестком диске позволяет злоумышленнику получить к ним доступ и в дальнейшем подделывать документы, подписанные на этих ключах.