Смекни!
smekni.com

работа (стр. 2 из 2)

Рис. 1 Трубчатая печь

По этим причинам была разработана другая система, в кото­рой эндотермические реакции конверсии совмещены с экзотермическим процессом сгорания части углеводорода при подаче в кон­вертор кислорода, благодаря чему суммарный процесс становится немного экзотермическим. Расчеты показывают, что для этой цели на конверсию надо подавать смесь СН4 и О2 в отношении 1 : 0,55, находящуюся вне пределов взрываемости, которые тем более не достигаются из-за разбавления смеси водяным паром. Объемное отношение последнего к метану в этом случае можно брать более низким, чем в отсутствии кислорода, а именно от 1:1 до (2,5÷3):1 в зависимости от применяемого давления. Этот процесс окислительной, или автотермической конверсии получил большое распространение. Он не требует подвода тепла извне и осуществляется в шахтных печах со сплошным слоем катализатора (рис. 2).

Рис. 2 Шахтная печь окислительной конверсии

Корпус конвертора футерован огнеупорным кирпичом и имеет охлаждающую водяную рубашку, в которой генерируется пар. В верхней части конвертора имеется смеситель, куда подают смеси СН4 + Н2О и О2 + Н2О. Смеситель должен обеспечить гомогенизацию смеси в условиях, исключающих взрыв или воспламенение. Сгорание метана протекает примерно в 10 раз быстрее конверсии, поэтому в верхних слоях катализатора температура быстро повышается до максимума (1100 – 12000С) и затем падает (до 800 – 9000С) на выходе из печи. По сравнению с конверсией в трубчатых печах при этом методе устраняется потребность в жаростойких трубах, конструкция реактора становится очень простой и большая часть его объема полезно используется для размещения катализатора. При окислительной конверсии в получаемом газе несколько возрастает количество СО.

3. Технологическая часть процесса конверсии углеводородов

Процесс состоит из нескольких стадий: подготовки сырья, конверсии, утилизации тепла, очистки газа от СО2. При подготовке сырья следует иметь в виду, что никелевый катализатор чувствителен к отравлению органическими соединениями серы, содержание которых в углеводороде ограничивают величиной 1 мг S в 1 м3. Сырье, не удовлетворяющее этим условиям, нужно очищать, для чего подвергают каталитическому гидрообессериванию с последующим удалением образовавшегося сероводорода. Стадия подготовки сырья включает также компримирование газа, смешение его с водяным паром и предварительное нагревание смеси.

Принципиальная схема окислительной конверсии метана (или природного газа) при высоком давлении приведена на рис. 3.

Исходный метан, очищенный от сернистых примесей, сжимают турбокомпрессором 1 до 2 – 3 МПа и смешивают с необходимым количеством водяного пара и СО2. Смесь подогревают в теплообменнике 2 до 4000С частично охлажденным конвертированным газом и подают в смеситель конвертора 6, куда поступает предварительно приготовленная смесь кислорода с равным объемом водяного пара. Конвертор охлаждается кипящим в рубашке конденсатом; при этом генерируется пар давлением 2 – 3 МПа, который отделяют в паросборнике 5. Тепло горячего конвертированного газа, выходящего из конвертора при 800 – 9000С, используют в котле-утилизаторе 4 для получения пара высокого давления, направляемого затем в линию пара соответствующего давления или используемого для привода турбокомпрессора. Тепло частично охлажденного газа утилизируют для предварительного подогревания смеси в теплообменнике 2 и в теплообменнике 3 для нагревания водного конденсата, питающего котел-утилизатор. Окончательное охлаждение газа осуществляют в скруббере 7 водой, циркулирующей через холодильник 8.

Полученный на этой стадии синтез-газ в зависимости от требований к соотношению СО и Н2 содержит 15 – 45 % (об.) СО, 40 – 75 % (об.) Н2, 8 – 15 % (об.) СО2, 0,5 % (об.) СН4 и по 0,5 – 1 % (об.) N2 и Ar. Этот газ очищают от СО2, для чего применяют абсорбцию водой под давлением, хемосорбцию водным раствором моноэтаноламина или карбоната калия. При нагревании и снижении давления происходят обратные превращения и выделяется СО2, а раствор регенерируется:

CH2OHCH2NH2 + CO2 ↔ CH2OHCH2NH2∙CO2

K2CO3 + CO2 + H2O ↔ 2KHCO3




Конвертированный газ поступает в абсорбер 9, где поглощается диоксид углерода, а очищенный газ направляют затем потребителю. Насыщенный абсорбент подогревается в теплообменнике 10 горячим регенерированным раствором и поступает в десорбер 11, с низа которого абсорбент направляют через теплообменник 10 вновь на поглощение СО2 в абсорбер 9. Диоксид углерода с верха десорбера 11 компримируют до соответствующего давления и возвращают на конверсию, смешивая перед теплообменником 2 с природным газом и водяным паром.

На получение 1 м3 очищенного синтез-газа расходуется 0,35 – 0,40 м3 природного газа, 0,2 м3 технического кислорода и в зависимости от применяемого давления и добавки СО2 от 0,2 до 0,8 кг водяного пара.

Список литературы

1. Габриэлян О. С., Остроумов И. Г. Химия. М., Дрофа, 2008;

2. Чичибабин А. Е. Основные начала органической химии. М., Госхимиздат, 1963. – 922 с.;

3. Лебедев Н. Н. Химия и технология основного органического и нефтехимического синтеза. М., Химия. 1988. – 592 с.;

4. Паушкин Я. М., Адельсон С. В., Вишнякова Т. П. Технология нефтехимического синтеза. М., 1973. – 448 с.;

5. Юкельсон И. И. Технология основного органического синтеза. М., «Химия», 1968.