nб/повт =
Таким образом, необходимо включить в выборку не менее 62 рабочих при определении среднего месячного дохода работников предприятия, чтобы не ошибиться более чем на 50 у.е., и не менее 197 рабочих при определении доли рабочих с размером месячного дохода более 700 у.е., чтобы при этом не ошибиться более чем на 5%.
Для изучения вкладов населения в коммерческом банке города была проведена 5%-я случайная выборка лицевых счетов, в результате которой получено следующее распределение клиентов по размеру вкладов:
|   Размер вклада, у.е.  |    Число вкладчиков, чел.  |  |||||||||
 Вариант |  ||||||||||
|   1  |    2  |    3  |    4  |    5  |    6  |    7  |    8  |    9  |    10  |  |
|   до 5000  |    10  |    80  |    100  |    50  |    60  |    30  |    90  |    20  |    70  |    40  |  
|   5 000 – 15 000  |    40  |    60  |    150  |    30  |    40  |    110  |    75  |    65  |    90  |    80  |  
|   15 000 – 30 000  |    25  |    35  |    70  |    90  |    120  |    90  |    130  |    140  |    60  |    95  |  
|   30 000 – 50 000  |    30  |    45  |    40  |    5  |    80  |    30  |    60  |    75  |    20  |    115  |  
|   свыше 50 000  |    15  |    10  |    30  |    25  |    50  |    15  |    25  |    5  |    10  |    5  |  
С вероятностью 0,954 определить:
1) средний размер вклада во всем банке;
2) долю вкладчиков во всем банке с размером вклада свыше 15000 у.е.;
3) необходимую численность выборки при определении среднего размера вклада, чтобы не ошибиться более чем на 500 у.е.;
4) необходимую численность выборки при определении доли вкладчиков во всем банке с размером вклада свыше 30 000 у.е., чтобы не ошибиться более чем на 10%.
Задача 1. Смертность от болезней системы кровообращения в России за период 1995-2004 гг. характеризуется следующим рядом динамики.
|   Год  |    1995  |    1996  |    1997  |    1998  |    1999  |    2000  |    2001  |    2002  |    2003  |    2004  |  
|   Умершие, тыс. чел.  |    1163,5  |    1113,7  |    1100,3  |    1094,1  |    1187,8  |    1231,4  |    1253,1  |    1308,1  |    1330,5  |    1287,7  |  
Вычислить: абсолютные, относительные, средние изменения и их темпы базисным и цепным способами. Проверить ряд на наличие в нем линейного тренда, на основе которого рассчитать интервальный прогноз на 2005 год с вероятностью 95%.
Решение. Любое изменение уровней ряда динамики определяется базисным (сравнение с первым уровнем) и цепным (сравнение с предыдущим уровнем) способами. Оно может быть абсолютным (разность уровней ряда) и относительным (соотношение уровней).
Базисное абсолютное изменение представляет собой разность конкретного и первого уровней ряда (47), а цепное абсолютное изменение представляет собой разность конкретного и предыдущего уровней ряда (48).
По знаку абсолютного изменения делается вывод о характере развития явления: при
В нашей задаче эти изменения определены в 3-м и 4-м столбцах таблицы 5. Для проверки правильности расчетов применяется правило, согласно которому сумма цепных абсолютных изменений равняется последнему базисному. В нашей задаче это правило выполняется:  =124,2 и  
=124,2.
Базисное относительное изменение представляет собой соотношение конкретного и первого уровней ряда (49), а цепное относительное изменение представляет собой соотношение конкретного и предыдущего уровней ряда (50).
Относительные изменения уровней — это по существу индексы динамики, критериальным значением которых служит 1. Если они больше ее, имеет место рост явления, меньше ее — спад, а при равенстве единице наблюдается стабильность явления.
В нашей задаче эти изменения определены в 5-м и 6-м столбцах таблицы 5.
Вычитая единицу из относительных изменений, получают темп изменения уровней, критериальным значением которого служит 0. При положительном темпе изменения имеет место рост явления, при отрицательном — спад, а при нулевом темпе изменения наблюдается стабильность явления. В нашей задаче темпы изменения определены в 7-м и 9-м столбцах таблицы 5, а в 8-м и 10-м сделан вывод о характере развития изучаемого явления. Для проверки правильности расчетов применяется правило, согласно которому произведение цепных относительных изменений равняется последнему базисному. В нашей задаче это правило выполняется:  =1,107 и  
=1,107.
Таблица 5. Вспомогательные расчеты для решения задачи
Обобщенной характеристикой ряда динамики является средний уровень ряда
Рис.3. Методы расчета среднего уровня ряда динамики.
В нашей задаче ряд динамики интервальный, значит, применяем формулу средней арифметической простой (17):
Кроме среднего уровня в рядах динамики рассчитываются и другие средние показатели – среднее изменение уровней ряда (базисным и цепным способами), средний темп изменения.
Базисное среднее абсолютное изменение – это частное от деления последнего базисного абсолютного изменения на количество изменений уровней (51). Цепное среднее абсолютное изменение уровней ряда – это частное от деления суммы всех цепных абсолютных изменений на количество изменений (52).
По знаку средних абсолютных изменений также судят о характере изменения явления в среднем: рост, спад или стабильность. Из правила контроля базисных и цепных абсолютных изменений следует, что базисное и цепное среднее изменение должны быть равными. В нашей задаче