Смекни!
smekni.com

Анализ и оценка кредитоспособности заемщика (стр. 5 из 8)

Наиболее известными моделями МДАявляются модели Альтмана и Чессера, включающие следующие показатели: отношение собственных оборотных средств к сумме активов; отношение реинвестируемой прибыли к сумме активов; отношение рыночной стоимости акций к заемному капиталу; отношение объема продаж (выручки от реализации) к сумме активов; отношение брутто-прибыли (прибыли до вычета процентов и налогов) к сумме активов.

Организацию относят к определенному классу надежности на основе значений Z-индекса модели Альтмана. Пятифакторная модель Альтманапостроена на основе анализа состояния 66 фирм и позволяет дать достаточно точный прогноз банкротства на два-три года вперед. В более поздних работах ученый изучил такие факторы, как капитализируемые обязательства по аренде, применил сглаживание данных для устранения случайных колебаний. Новая модель с высокой с степенью точности предсказывает банкротство на два года вперед и с меньшей вероятностью (примерно 70%) – на пять лет вперед. Построение в российских условиях подобных моделей достаточно сложно из-за отсутствия статистических данных о банкротстве организаций, постоянного изменения нормативной базы в области банкротства и признания банкротства организации на основе данных, не поддающихся учету.

Модель Чессера позволяет прогнозировать невыполнение клиентом условий договора о кредите. Невыполнение подразумевает не только непогашение кредита, но и любые другие отклонения, делающие отношения между кредитором и заемщиком менее выгодными по сравнению с первоначальными условиями. Используемая линейная комбинация независимых переменных (Z) включает: отношение кассовой наличности и стоимости легко реализуемых ценных бумаг к сумме активов; отношение чистой суммы продаж (без учета НДС) к сумме кассовой наличности и стоимости легко реализуемых ценных бумаг; отношение брутто-дохода (прибыли до вычета процентов и налогов) к сумме активов; отношение совокупной задолженности к сумме активов; отношение основного капитала к величине чистых активов (или применяемого капитала, равного акционерному капиталу и долгосрочным кредитам); отношение оборотного капитала к нетто-продажам (чистой сумме продаж). Получаемый показатель может рассматриваться как оценка вероятности невыполнения условий кредитного договора. Чессер использовал данные ряда банков по 37 «удовлетворительным» и 37 «неудовлетворительным» кредитам и для расчета взял показатели балансов фирм-заемщиков за год до получения кредита. Подставив расчетные показатели модели в формулу вероятности нарушения условий договора, Чессер правильно определил три из каждых четырех исследуемых случаев[17].

Отечественные дискриминантные модели прогнозирования банкротства представлены двухфакторной моделью М. Федотовой и пятифакторной моделью Р. Сайфулина, Г. Кадыкова. Модель оценки вероятности банкротств Федотовой опирается на коэффициент текущей ликвидности (Х{) и долю заемных средств в валюте баланса (Х2).

В уравнении Сайфулина, Кадыкова используются следующие коэффициенты: коэффициент обеспеченности собственными средствами (нормативное значение Х1 > 0,1); коэффициент текущей ликвидности (Х2> 2); интенсивность оборота авансируемого капитала, характеризующая объем реализованной продукции, приходящейся на 1 руб. средств, вложенных в деятельность организации (Х3 >2,5); рентабельность продаж, рассчитываемая как отношение прибыли от продаж к выручке (для каждой отрасли индивидуальная); рентабельность собственного капитала (Х5>0,2). При полном соответствии значений финансовых коэффициентов минимальным нормативным уровням Z= 1 финансовое состояние заемщика с рейтинговым числом менее 1 характеризуется как неудовлетворительное.

Помимо МДА-моделей прогнозирования вероятного банкротства заемщика могут использоваться и упрощенные модели, основанные на системе определенных показателей. К примеру, система показателей Бивера включает: коэффициент Бивера (КБивера); рентабельность активов; финансовый рычаг; коэффициент покрытия активов собственным оборотным капиталом; коэффициент покрытия краткосрочных обязательств оборотными активами. Коэффициент Бивера равен отношению разницы чистой прибыли и амортизации к сумме долгосрочных и краткосрочных обязательств. Значение КБивера ≥ - 0,15 свидетельствует о неблагополучном финансовом состоянии за год до банкротства, как и значение коэффициента покрытия активов чистым оборотным капиталом меньше 0,06, а коэффициента покрытия краткосрочных обязательств меньше 1[18].

4. Модель CART (Classificationandregressiontrees – «классификационные и регрессионные деревья») – непараметрическая модель, основные достоинства которой заключаются в возможности широкого применения, доступности для понимания и легкости вычислений, хотя при построении применяются сложные статистические методы. В «классификационном дереве» фирмы-заемщики расположены на определенной «ветви» в зависимости от значений выбранных финансовых коэффициентов; далее идет «разветвление» каждой из них в зависимости от следующих коэффициентов. Точность классификации при использовании данной модели – около 90%.

5. Методика на основе анализа денежных потоков позволяет использовать не данные об остатках по статьям активов и пассивов, а коэффициенты, определяемые по данным об оборотах ликвидных активов, запасах и краткосрочных долговых обязательствах, посредством расчета чистого сальдо различных поступлений и расходов денежных средств за определенный период. Разница между притоком и оттоком средств показывает величину общего чистого денежного потока. Кратковременное превышение оттока над притоком говорит о дефиците денежных средств (более низком рейтинге клиента). Систематическое превышение оттока над притоком средств характеризует клиента как некредитоспособного. Сложившаяся средняя величина общего денежного потока может устанавливаться в качестве предела выдачи новых кредитов, так как показывает размер средств, с помощью которых клиент имеет возможность погашать долговые обязательства. На основе соотношения величины общего денежного потока и размера долговых обязательств клиента определяется его класс кредитоспособности. Анализ денежного потока позволяет сделать вывод о слабых сторонах управления предприятия. При решении вопроса о выдаче кредита на длительный срок анализ денежного потока проводится не только на основе данных за истекший период, но и на основе прогнозных данных на планируемый период[19].

2.2 Модели оценки кредитоспособности заемщиков, основанные на методах комплексного анализа

В случае использования математических моделей не учитывается влияние «качественных» факторов при предоставлении банками кредитов. Эти модели лишь отчасти позволяют кредитным экспертам банка сделать вывод о возможности предоставления кредита. Недостатками классификационных моделей являются их «замкнутость» на количественных факторах, произвольность выбора системы количественных показателей, высокая чувствительность к недостоверности исходных данных, громоздкость при использовании статистических межотраслевых и отраслевых данных. В рамках комплексных моделей анализа возможно сочетание количественных и качественных характеристик заемщика. Можно выделить следующие методы:

1. Правило «шести Си», применяемый банками США. В его основе лежит использование шести базовых принципов кредитования, обозначенных словами, начинающимися с английской буквы «Си» (С): Character, Capacity, Cash, Collateral, Conditions, Control.

Характер заемщика (Character): ответственность, надежность, честность, порядочность и серьезность намерений клиента.

Способность заимствовать средства (Capacity): кредитный инспектор должен быть уверен в том, что клиент, испрашивающий кредит, имеет юридическое право подавать кредитную заявку и подписывать кредитный договор, т.е. в том, что руководитель или представитель компании (банка), обращающийся за кредитом, имеет соответствующие полномочия, предоставленные ему учредителями или советом директоров, на проведение переговоров и подписание кредитного договора от имени компании (банка).

Денежные средства (Cash): важным моментом любой кредитной заявки является определение возможности заемщика погасить кредит за счет средств, полученных от продажи или ликвидации активов, потока наличности или привлеченных ресурсов.

Обеспечение (Collateral): при оценке обеспечения по кредитной заявке необходимо установить, располагает ли заемщик достаточным капиталом или качественными активами для предоставления необходимого обеспечения по кредиту; необеспеченные кредиты предоставляются первоклассным заемщикам, имеющим квалифицированное руководство и отличную кредитную историю.

Условия (Conditions): кредитный инспектор должен знать, как идут дела у заемщика, каково положение, складывающееся в соответствующей отрасли, а также то, как изменение экономических и других условий в стране может повлиять на процесс погашения кредита.

Контроль (Control) сводится к выяснению, насколько изменение законодательства, правовой, экономической и политической обстановки может негативно повлиять на деятельность заемщика и его кредитоспособность.