Смекни!
smekni.com

по палеву удк 551. 8 Ббк 26. 323. 9 С88 (стр. 2 из 12)

Наиболее разработано расчленение отложений по ископаемым остаткам морской фауны. Выделяются руководящие виды и их комплексы для наиболее мелких единиц стратиграфической шкалы - зон. Из зон выстраивают более крупные единицы: горизонты, подъярусы, ярусы, отделы, системы. Для изученных видов и систематических групп фауны обычно бывают известны и палеоэкологические особенности: существуют холодо- и теплолюбивые виды, переносящие и не переносящие опреснение и т.д. Поэтому состав фауны, содержащейся в тех или иных отложениях, позволяет су'дить об условиях их формирования.

Для континентальных отложений датировки обычно делаются менее уверенно из- за фактора переотложения ископаемых остатков. Возраст отложений и условия их формирования (теплые или холодные, сухие или влажные) определяются по составу фаунистических комплексов: млекопитающих (для кайнозоя), пресмыкающихся, земноводных, наземных и пресноводных моллюсков. Для отдельных этапов формирования континентальных осадков выделяются фаунистические комплексы, состав которых закономерно отражает природные условия. Различают тундровые, лесные, степные и т.д. фаунистические комплексы.

Палеоботанические методы. Заключаются в изучении ископаемых макроскопических (палеокарпологический анализ) и микроскопических (палинологический, или спорово-пыльцовый анализ) растительных остатков. Палеоботанические методы применяются, главным образом, при изучении континентальных отложений. По макро- и микроскопическим остаткам определяется состав флористических комплексов и, соответственно, зональный тип растительности в период их существования. Среди растений выделяются характерные тундровые, таежно- лесные. степные и т.д. виды и систематические группы. Из сопоставления разновозрастных флористических комплексов выявляются тенденции изменения климата в соответствующие интервалы времени.

Благодаря значительному распространению ископаемых спор и пыльцы в континентальных отложениях по скважинам и обнажениям нередко удается построить графики (диаграммы), показывающие, как изменялся состав растительности в ходе формирования отложений. На них выделяют фазы похолодания и потепления, увлажнения и иссушения климата. Последовательность смены климатических фаз служит одним из критериев корреляции (сопоставления) разрезов. Для относительно молодых, хорошо изученных интервалов времени определяются районы распространения наиболее близких по составу современных флор. Это позволяет на основе аналогий определять климатические параметры.

Археологический метод. Применяется при изучении четвертичного периода, и в особенности его наиболее молодых подразделений. Метод заключается в восстановлении условий жизни ископаемого человека по следам его материальной культуры: характеру стоянок и жилищ, наскальной живописи, орудий, одежды, по костным остаткам животных, на которых охотились. Выделяется ряд археологических эпох (культур), увязанных с этапами развития природы.

Палеомагнитный метод. С его помощью определяется остаточная намагниченность пород, восстанавливается история магнитного поля Земли и увязываются события в ее ходе (смены полярности, различной продолжительности и периодичности) с тектоническими и климатическими событиями. Палеомагнитный метод позволяет определять направления меридианов и параллелей во время формирования пород, что весьма важно для восстановления истории перемещений литосферных плит.

Изотопные методы абсолютной геохронологии. Включают ряд частных методов (радиоуглеродный, калий-аргоновый, и др.), основанных на определении количества содержащихся в породах или ископаемых остатках радиоактивных изотопов и продуктов их распада. Скорость радиоактивного распада является физической константой, и точное определение содержания отдельных изотопов позволяет (при условиях, обеспечивающих изоляцию объекта исследования) определять, с той или иной точностью, возраст пород в годах.

Палеотемпературный метод. Основан на зависимости соотношения изотопов кислорода 180 и 160 от температуры водной среды. Метод применяется к изучению остатков морских моллюсков. Определяется изотопный состав кислорода в составе кальцита, слагающего раковины, одновременно с определением их абсолютного возраста. Сопряженное использование палеотемпературного метода и абсолютных датировок позволяет строить палеотемпературные кривые - графики изменения температуры морской воды в придонных слоях. Морские осадки образуют непрерывные разрезы; из сопоставления таких разрезов для разных пунктов Мирового океана выявляют глобальные ритмы потеплений и похолоданий.

Палеогеомофологический метод. Основан на выявлении условий образования древних форм рельефа, в т.ч. погребенного или реконструируемого. По результатам геоморфологического изучения выделяются эпохи расчленения, фиксируемые погребенными долинами, эпохи выравнивания рельефа, т.е. образования пенепленов и педипленов. По деформациям поверхностей выравнивания, речных, морских и озерных террас, погребенных долин определяется характер последующих тектонических движений. Современный рельеф подразделяется на формы различного порядка, для которых определяется время и условия образования. Среди форм рельефа особо выделяют реликтовые, т.е. отражающие условия рельефообразования. отличные от современных: ледниковые формы, береговые образования, барханы и дюны, термокарстовые западины и др.

Составление и анализ палеогеографических карт. Данные палеогеографических реконструкций наносятся на карты, составляемые для определенных интервалов времени. На палеогеографических картах отображаются: генетические и фациалъные типы осадконакопления, данные определения палеотемператур. места находок и характер ископаемых флористических и фаунистических остатков, направления параллелей и меридианов. На основе обобщения частных фактов картируются древние природные зоны, направления движения литосферных плит, морских течений, материковых ледников. При анализе палеогеографических карт выявляются тенденции и закономерности развития природы в определенные периоды времени. При проведении прикладных патеогеографических исследований выделяют факторы, благоприятствовавшие накоплению полезных ископаемых (болотно-лесная растительность для угленакопления, межгорные депрессии для россыпеобразования и др.). Далее на специальных картах оконтуриваются территории, условия которых благоприятствовали формированию соответствующих полезных ископаемых.

ИСТОРИЯ РАЗВИТИЯ ГЕОГРАФИЧЕСКОЙ ОБОЛОЧКИ

Ранние этапы развития Земли

История Земли включает две крупнейших единицы - зона: криптозой (время скрытой жизни) и фанерозой (время явной жизни). Для фанерозоя. включающего палеозойскую, мезозойскую и кайнозойскую эры, существуют хорошо разработанные биостратиграфические и геохронологические шкалы, на которые опираются палеогеографические реконструкции; используется принцип актуализма. Для криптозоя. включающего катархей, архей, протерозой, рифей и венд, фактов и датировок установлено значительно меньше, палеогеографические реконструкции затруднены в связи с резкими отличиями природных условий от современных

Катархей (4.5-3,5 млрд. лет назад). Вследствие метеоритной бомбардировки происходило образование кратеров. В недрах Земли радиоактивный распад привел к разогреву и расплавлению вещества, что создало предпосылки для его гравитационной дифференциации. Тяжелые элементы концентрировались в ядре, более легкие двигались к поверхности, где формировалась корка твердого вещества - первичная литосфера. Она не подразделялась на структуры, была очень тонкой, непрочной и часто прорывалась. Тогда происходили площадные излияния лав, активизировалась дегазация недр. За счст дегазации недр формировалась первичная атмосфера восстановительного состава: преобладали метан, аммиак, в меньшей степени - водород, пары воды, диоксид и оксид углерода. Конденсация паров должна была привести к образованию первичной гидросферы; о ее характере имеются разнообразные гипотезы - от представления об отсутствий водоемов вследствие высокой температуры до предположений об океане, который покрывал всю планету.

Примерно 3,6-3,7 млрд. лет назад внутреннее ядро Земли стало достаточно большим, чтобы продуцировать конвекционные потоки в мантии. В результате воздействия этих потоков происходило образование вулкано-плутонических структур, обычно округлой формы, - древнейших ядер консолидации. Такие образования, сложенные серыми гнейсами, возраст которых достигает 4-4,5 млрд. лет. встречены в пределах древних щитов: на Алданском нагорье, Кольском полуострове, в Южной Африке. Древние ядра консолидации в процессе тектонических движений присоединяли к себе перемятые и нагроможденные обломки первичной базальтовой коры. Пол воздействием магматических процессов происходили их метаморфизация (в т.ч. гранитизация) и увеличение размеров консолидированных образований. Так образовались первые протоконтиненты.

Таким образом, произошла дифференциация первичного вещества, образовавшего планету, с выделением из него атмосферы, гидросферы и литосферы. Атмосфера создала защиту от космических излучений и метеоритной бомбардировки. Гидросфера создала среду для образования растворов и протекания в них химических реакций. В пределах литосферы выделились первые участки с относительно стабильными условиями. Все эта создало предпосылки для появления жизни, что произошло приблизительно 4 миллиарда лет назад.

О происхождении жизни на Земле имеется две основных гипотезы - земная, предполагающая образование первичных жизненных форм из природных химических соединений (Опарин-Холдейн). и космическая, предполагающая проникновение на Землю организмов, возникших вне ее (Вернадский). При крайней недостаточности фактических данных вопрос о предпочтительности той или иной гипотезы происхождения жизни имеет не столько естественнонаучный, сколько религиозно- философский характер. Отметим, однако, что космическая гипотеза оставляет нерешенным вопрос о первичном происхождении жизни.