Правильные многогранники называются Платоновыми телами, они занимают видное место в философской картине мира, разработанной великим мыслителем Древней Греции Платоном.
Итак, правильных многогранников Платон знал пять, а число стихий (огонь, воздух, вода и земля) было ровно четыре. Следовательно, из пяти многогранников надо выбрать четыре, которые можно было бы сопоставить со стихиями.
Какими соображениями руководствовался при этом Платон? Прежде всего тем, что некоторые элементы, как он считал, могли перейти друг в друга. Преобразование одних многогранников в другие могли быть осуществлены путем перестройки их внутренней структуры. Но для этого в данных телах нужно было найти такие структурные элементы, которые были бы для них общими. Из внешнего вида правильных многогранников явствует, что грани трех многогранников - тетраэдра, октаэдра, икосаэдра – имеют форму равностороннего треугольника. Два оставшихся многогранника – куб и додекаэдр – построены: первый - из квадратов, а второй - из правильных пятиугольников, поэтому они не могут преобразовываться ни друг в друга, ни в рассмотренные три тела. Это значит, что если мы придадим частицам трех стихий формы тетраэдра, октаэдра и икосаэдра, то частицы четвертой стихии будем считать кубами или додекаэдрами, но эта четвертая стихия не сможет переходить в три других, а всегда будет оставаться сама собой. Платон решил, что такой стихией может быть только земля и что мельчайшие частицы, из которых земля состоит, должны быть кубами. Тетраэдру, октаэдру и икосаэдру были сопоставлены соответственно огонь, воздух и вода.
Тетраэдр (огонь) | Куб (земля) | Октаэдр (воздух) | Додекаэдр (модель Вселенной) | Икосаэдр (вода) |
Что касается пятого многогранника – додекаэдра, то он остается не у дел. По поводу него Платон ограничивается в «Тимее» замечанием, что «его бог определил для Вселенной и прибегнул к нему, когда разрисовывал ее и украшал».
Возникает вопрос «какими соображениями руководствовался Платон, приписывая частицам огня форму тетраэдра, частицам земли – форму куба и т.д.?». Здесь он учитывает чувственно-воспринимаемые свойства соответствующих стихий. Огонь – наиболее подвижная стихия, он обладает разрушительным действием, проникая в другие тела (сжигая или расплавляя, или испаряя их); при соприкосновении с ним мы испытываем чувство боли, как если бы мы укололись или порезались.
Какие частицы могли бы обусловить все эти свойства и действия? Очевидно, наиболее подвижные и легкие частицы, и притом обладающие режущими гранями и колющими углами. Из четырех многогранников, о которых может идти речь, в наибольшей степени удовлетворяет тетраэдр. Поэтому, говорит Платон, образ пирамиды (т.е. тетраэдра) и должен быть в согласии с правильным рассуждением и с правдоподобием, первоначалом и семенем огня, наоборот, земля выступает в нашем опыте как самая неподвижная и устойчивая из всех стихий. Поэтому частицы, из которых она состоит, должны иметь самые устойчивые основания. Из всех четырех тел этим свойством в максимальной мере обладает куб. Поэтому мы не нарушим правдоподобия, если припишем частицам земли кубическую форму. Аналогичным образом с двумя прочими стихиями мы соотнесем частицы, обладающие промежуточными свойствами. Икосаэдр, как самый обтекаемый, представляет частичку воды, октаэдр – частицу воздуха.
Пятый многогранник – додекаэдр – воплощал в себе «все сущее», символизировал весь мир и почитался главнейшим.
Мы видим, каким образом принцип правдоподобия сочетается у Платона с использованием данных повседневного опыта. Любопытно, что Платон почти не касается других, чисто спекулятивных, мотивов (например, связанных с теорией пропорций), которые играли решающую роль в построении его космологической концепции и которые могли оказать влияние и на некоторые аспекты его теории строения вещества.
Правда, сам Тимей, выступающий в данном случае в качестве профессора, читающего лекцию об устройстве мира, является, по всем данным, представителем пифагорейской школы. Однако до сих пор не ясно, существовал ли Тимей как историческая личность или же был фиктивным персонажем, придуманным Платоном для того, чтобы не делать автором космологических и физических теорий его обычного героя – Сократа, ибо это слишком не вязалось бы с образом последнего.
Платон «правдоподобно» систематизировал картину мира. Это была одна из первых попыток ввести в науку саму идею систематизации, которая оказалась очень плодотворной. Она помогла отделить одни области знаний от других, сделав научные исследования более целенаправленными.
2.4. Теория Кеплера (Слайд № 5, 6).
А теперь от Древней Греции перейдем к Европе XYI – XYII вв., где жил и творил замечательный немецкий астроном, математик и великий фантазер Иоганн Кеплер (1571-1630).
Кеплер действительно выступал в науке как астроном, математик и фантазер. Если бы в нем не было хотя бы одного из названных качеств, то он не смог бы достичь таких высот в науке.
На основе обобщения данных, полученных в результате наблюдений, он установил три закона движения планет относительно Солнца.
Первый закон: каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.
Второй закон: каждая планета движется в плоскости, проходящей через центр Солнца, причем площадь сектора орбиты, описанная радиусом-вектором, изменяется пропорционально времени.
Третий закон: квадраты времени обращения планеты вокруг Солнца относятся, как кубы их средних расстояний от Солнца.
Но это были только гипотезы, пока их не объяснил и уточнил на основе закона всемирного тяготения Исаак Ньютон (1643-1727), создавший теорию движения небесных тел, которая доказала свою жизнеспособность тем, что с ее помощью люди научились предсказывать многие небесные явления.
Но представим себя на месте Кеплера. Перед ним различные таблицы–столбики цифр. Это результаты наблюдений – как его собственных, так и великих предшественников-астрономов. В этом море вычислительной работы человек хочет найти некоторую закономерность. Что поддерживает его в таком грандиозном замысле? Во-первых, вера в гармонию, уверенность в том, что мироздание устроено закономерно, а значит, законы его устройства можно обнаружить. А во-вторых, фантазия в сочетании с терпением и честностью. В самом деле, ну надо же от чего-то оттолкнуться! Искомые законы надо сначала придумать в собственной голове, а потом проверять их наблюдениями.
Сначала Кеплера соблазнила мысль о том, что существует всего пять правильных многогранников и всего шесть (как казалось тогда) планет Солнечной системы: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн. Показалось, что гармония мира и любовь природы к повторениям сделали правильные многогранники связующими звеньями между шестью небесными телами. Кеплер предположил, что сферы планет связаны между собой вписанными в них Платоновыми телами. Так как для каждого правильного многогранника центры вписанной и описанной сфер совпадают, то вся модель будет иметь единый центр, в котором располагается Солнце.
Кеплер выполнил огромную вычислительную работу, чтобы подтвердить свои предположения. В 1596 году он выпустил книгу, в которой они были изложены. Согласно этим предположениям, в сферу орбиты Сатурна можно вписать куб, в который вписывается сфера орбиты Юпитера. В нее, в свою очередь, вписывается тетраэдр, описанный около сферы орбиты Марса. В сферу орбиты Марса вписывается додекаэдр, в который вписывается сфера орбиты Земли. А она описана около икосаэдра, в который вписана сфера орбиты Венеры. Сфера этой планеты описана около октаэдра, в который вписывается сфера Меркурия. Такая модель Солнечной системы получила название «Космического кубка» Кеплера.
2.5. Задача о проверке космической теории Платоновых тел.
Можно проверить самим космическую теорию Платоновых тел. Рассмотрим задачу:
«Средние радиусы орбиты Сатурна и Юпитера равны соответственно Rс= 1, 427·109 км и Rю = 0,788 · 109 км. Найдите отношение радиусов орбит указанных планет и сравните найденное отношение с отношением радиусов описанной около куба и вписанной в него сфер».
Решение.
Согласно гипотезе Кеплера эти отношения должны быть равны. Итак, из наблюдений имеем:
.Согласно гипотезе в сферу орбиты Сатурна вписан куб, пусть его ребро равно а. Тогда радиус вписанной окружности равен половине диагонали вписанного куба, т.е.
но и тогда . В этот куб вписана сфера (орбита Юпитера). Обозначим ее радиус через r. Он равен половине ребра куба, т.е. . Тогда .Как видим, расхождение между теоретическим отношением R : r и наблюдаемым Rс : Rю не так уж и велико, менее 0,1. А для космических масштабов оно вроде бы и допустимо. Эти «почти совпадения» и заставляли Кеплера долго держаться за теорию платоновых тел, поскольку легко было заподозрить ошибку в наблюдениях.