Смекни!
smekni.com

Основные достижения классической физики (стр. 2 из 5)

Важно отметить, что в законе всемирного тяготения масса выступает в качестве меры гравитации, т.е. определяет силу тяготения между материальными телами.

Важность закона всемирного тяготения состоит в том, что Ньютон, таким образом, динамически обосновал систему Коперника и законы Кеплера.

Одним из величайших достижений на этом поприще стали эмпирические законы И. Кеплера, которые убедительно показали существование порядка в движении планет Солнечной системы. Решающий же шаг в понимании причин этого порядка был сделан И. Ньютоном. Созданная им классическая механика в чрезвычайно лаконичной форме обобщила весь предшествующий опыт человечества в изучении движений. Оказалось, что все многообразие перемещений макроскопических тел в пространстве может быть описано всего лишь двумя законами: законом инерции (F = ma) и законом всемирного тяготения (F = Gm1m2 / r2). И не только законы Кеплера, относящиеся к Солнечной системе, оказались следствием законов Ньютона, но и все наблюдаемые человеком в естественных условиях перемещения тел стали доступными аналитическому расчету. Точность, с которой такие расчеты позволяли делать предсказания, удовлетворяли любые запросы. Сильнейшее впечатление на людей произвело обнаружение в 1846 году ранее неизвестной планеты Нептун, положение которой было рассчитано заранее на основании уравнений Ньютона (Адамс и Леверье).

К середине XIX века авторитет классической механики возрос настолько, что она стала считаться эталоном научного подхода в естествознании. Широта охвата явлений природы, однозначная определенность (детерминизм) выводов, характерные для механики Ньютона, были настолько убедительны, что сформировалось своеобразное мировоззрение, в соответствии с которым механистический подход следует применять ко всем явлениям природы, включая физиологические и социальные, и что надо только определить начальные условия, чтобы проследить эволюцию природы во всем ее многообразии. Это мировоззрение часто называют «детерминизмом Лапласа», в память о великом французском ученом П-С. Лапласе, внесшем большой вклад в небесную механику, физику и математику.

Очень образно об этом сказал сам Лаплас: «Ум, которому были бы известны для какого-либо момента времени все силы, одушевляющие природу, обнял бы в одной формуле движение величайших тел Вселенной наравне с движением атомов. И будущее, также как и прошедшее предстало бы перед его взором»[5].

Однако, эта программа - сведение всех природных явлений к механическому движению под действием сил - оказалась не реализованной, прежде всего, из-за проблем с описанием световых, электрических и магнитных явлений.

2. Развитие классической физики

Механика и связанные с ней области, а также акустика и оптика возникли очень давно, поскольку они изучают явления, с которыми человек непрерывно сталкивается в своей повседневной жизни. Наука же об электричестве, напротив, появилась сравнительно недавно. Конечно, некоторые факты, как например, электризация тел трением или свойства природных магнитов, были известны уже и раньше. Не могли не обратить на себя внимания и такие величественные и странные явления природы, как грозы.

Однако вряд ли эти факты в достаточной степени исследовались и сопоставлялись до конца XVIII в. и вряд ли кто-либо четко представлял себе в то время, что они станут объектом изучения новой науки, составляющей одну из важнейших областей современной физики. Это стало ясно лишь в конце XVIII и начале XIX в. Интересно отметить, что в то же самое время были открыты явления интерференции и построена волновая теория. Этот замечательный период в истории развития науки, когда возникла волновая оптика и современная теория электричества, был для макроскопической физики тем же, чем были последние 50 лет для атомной физики

Второй этап классического периода физики это 60-е гг. ХIХ в.– 1894 г. Во второй половине XIX века стало ясно, что материальный мир не сводится только к механическим перемещениям вещества. Еще одной формой существования материи было признано электромагнитное поле, наиболее полную теорию которого создал Дж.К. Максвелл.

Концепция силовых линий, предложенная Фарадеем, долгое время не принималась всерьез другими учеными. Дело в том, что Фарадей, не владея достаточно хорошо математическим аппаратом, не дал убедительного обоснования своим выводам на языке формул. («Это был ум, который никогда не погрязал в формулах – сказал о нем А. Эйнштейн)[6].

Блестящий математик и физик Джеймс Максвелл берет под защиту метод Фарадея, его идею близкодействия и поля, утверждая, что идеи Фарадея могут быть выражены в виде обычных математических формул, и эти формулы сравнимы с формулами профессиональных математиков.

Теорию поля Д. Максвелл разрабатывает в своих трудах «О физических линиях силы» (1861-1865) и «Динамическая теория поля (1864-1865). В последней работе и была дана система знаменитых уравнений, которые (по словам Герца) составляют суть теории Максвелла.

Эта суть сводилась к тому, что изменяющееся магнитное поле создает не только в окружающих телах, но и в вакууме вихревое электрическое поле, которое, в свою очередь, вызывает появление магнитного поля. Таким образом, в физику была введена новая реальность – электромагнитное поле. Это ознаменовало начало нового этапа в физике - этапа, на котором электромагнитное поле стало реальностью, материальным носителем взаимодействия[7].

Мир стал представляться электродинамической системой, построенной из электрически заряженных частиц, взаимодействующих посредством электромагнитного поля.

Система уравнений для электрических и магнитных полей, разработанная Максвеллом, состоит из 4-х уравнений, которые эквивалентны 4-м утверждениям

Уравнения Максвелла состоят из двух векторных уравнений, эквивалентных шести уравнениям для компонент, и двух скалярных уравнений. Эти уравнения связывают компоненты векторов электрического и магнитного полей и векторов электрической и магнитной индукции между собой и с плотностями электрического заряда и тока. Одно из векторных уравнений выражает закон индукции, открытый Фарадеем. Одно из скалярных уравнений отражает невозможность выделения магнитных зарядов или полюсов одного знака, другое формулирует электростатическую теорему Гаусса. Эти уравнения стали обобщением уже известных законов. Однако второе векторное уравнение содержит существенно новый элемент, внесенный в теорию собственно Максвеллом.

Второе векторное уравнение должно было отразить связь, существующую между магнитным полем и электрическим током, согласно закону Ампера. Согласно этому закону, ротор от вектора напряженности магнитного поля должен быть равен (с точностью до постоянной, зависящей от выбора системы единиц измерений) плотности электрического тока. Но Максвелл заметил, что если определить входящую в это уравнение плотность тока как плотность только тока, связанного с переносом заряда, то это приводит к целому ряду трудностей. Чтобы избежать их, он выдвинул блестящую идею – обобщить выражение для плотности тока, добавив к так называемому току проводимости, обусловленному переносом заряда, слагаемое, пропорциональное скорости изменения во времени вектора электрической индукции. Это слагаемое представляет собой новый вид тока, ток смещения, который в отличие от тока проводимости вовсе не обязательно связан с перемещением электрических зарядов. Так, например, в поляризуемой среде часть тока смещения связана с перемещением электрических зарядов, другая же его часть, отличная от нуля даже в пустоте, если электрическое поле переменно во времени, совершенно не связана с движением зарядов. Благодаря введению токов смещения трудности, о которых мы упоминали, исчезли. Сложный вопрос о замкнутых и незамкнутых токах, занимавший теоретиков того времени, разрешился сам собой, поскольку, если принять во внимание токи смещения, то все эти токи окажутся замкнутыми.

Но самая гениальная идея Максвелла, выдвинутая после написания общих уравнений электромагнитных явлений, состояла в том, что эти уравнения дают возможность рассматривать свет как электромагнитное возмущение. Это в свою очередь позволило объединить две казавшиеся столь различными области физики и рассматривать всю оптику как частный случай электродинамики – один из наиболее замечательных примеров синтеза, который дает нам история развития физики[8].

Анализируя свои уравнения, Максвелл пришел к выводу, что должны существовать электромагнитные волны, причем скорость их распространения должна равняться скорости света. Отсюда вывод: свет – разновидность электромагнитных волн. На основе своей теории Максвелл предсказал существование давления, оказываемого электромагнитной волной, а, следовательно, и светом, что было блестяще доказано экспериментально в 1906 г. П.Н. Лебедевым.

Вершиной научного творчества Максвелла явился «Трактат по электричеству и магнетизму».

Развитие корпускулярно-континуальных представлений в трудах Максвелла. Развивая теорию электромагнитного поля, Максвелл не отвергал и дискретность материи. Он писал: «Даже атом, когда мы приписываем ему способность вращаться, можно представлять состоящим из многих элементарных частиц»[9] Это было сказано в 1873 г. задолго до открытия электрона. Таким образом, Максвелл не отдавал предпочтения ни дискретности, ни непрерывности материи, допуская возможность и того и другого.

Одним из наиболее блестящих подтверждений теории Максвелла было открытие Герцем электромагнитных волн, названных в его честь волнами Герца. Электромагнитная теория предсказывала, что при достаточно быстром изменении электрического тока в цепи возможно излучение и окружающее пространство электромагнитной волны, которая, согласно идеям Максвелла, должна иметь структуру, совершенно аналогичную структуре световой волны. Но волны, которые можно было бы получать с помощью соответствующего электрического контура, обладали всегда частотой, гораздо меньшей, и соответственно длиной волны, гораздо большей, чем частота и длина световых волн. Отсюда, естественно, вытекало и различие между свойствами этих волн: волны Герца не воздействуют на наши органы чувств и, что связано с большой длины волны, легко огибают непрозрачные препятствия, встречающиеся на их пути. Однако, несмотря на эти различия, имелась и большая общность между световыми волнами и волнами Герца. В частности, с последними можно было повторить ставшие классическими эксперименты по отражению, преломлению, интерференции или дифракции волн. Необходимые для этого экспериментальные установки должны в основном быть такими же, хотя, разумеется, и гораздо больших масштабов в соответствии с изменившейся длиной волны.