Смекни!
smekni.com

Компьютеризация 3 d отображений нефтяных пластов (тема а) (стр. 1 из 3)

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

«ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт геологии и нефтегазового дела

Направление (специальности) – нефтегазовое дело (бурение и транспортировка)

Кафедры - бурение нефтяных и газовых скважин (БНГС); транспорт и хранение нефти и газа (ТХНГ)

КОМПЬЮТЕРИЗАЦИЯ 3D – ОТОБРАЖЕНИЙ НЕФТЯНЫХ ПЛАСТОВ

(тема реферата)

Реферат

Выполнили: студент группы 2Б52 Епихин А. В., студент группы 2Б53 Карнеев К. В.

Руководитель: Хамухин А. А., доцент

Томск –2006

Содержание:

Введение. 3

Общая характеристика 3D визуализации. 3

Построение 3D моделей в нефтегазовом деле. 3

Обсуждение положительных и отрицательных качеств 3D визуализации. 5

Практический пример использования трехмерного моделирования на основе изучения геологических объектов Урненского месторождения. 6

Перечень использованных источников. 9

Приложения. 11

Введение

Применение компьютерной техники в современной жизни стало незаменимым. Огромное количество отраслей используют вычислительные машины для ускорения решения задач. До недавнего времени вся компьютерная техника была лишь вспомогательным устройством для человека. Компьютер проводил различные вычисления, а основная работа лежала всё равно на человеке. Перед человечеством же стояли задачи масштабных строительств, проектов на будущее, испытаний, которых компьютер решить не мог. С появлением мощных графических станций, а так же компьютеров, способных решать не только математические задачи, но и визуализировать сложнейшие технологические процессы на экране, начинается новая эра в компьютерной промышленности. Существует огромное количество областей, где применяется трёхмерное моделирование и анимация.

Общая характеристика 3D визуализации

В самом названии рассматриваемой области – “трехмерная графика” - заложено указание на то, что нам предстоит иметь дело с тремя пространственными измерениями: шириной, высотой и глубиной. Если взглянуть вокруг: все, что нас окружает, обладает тремя измерениями – стол, стул, жилые здания, промышленные корпуса и даже тела людей. Однако термин “трехмерная графика” все же является искажением истины. На деле трехмерная компьютерная графика имеет дело всего лишь с двумерными проекциями объектов воображаемого трехмерного мира. В компьютерной графике объекты существуют лишь в памяти компьютера. Они не имеют физической формы – это не более чем совокупность математических уравнений и движение электронов в микросхемах. Поскольку объекты, о которых идет речь, не могут существовать вне компьютера, единственным способом увидеть их является добавление новых математических уравнений, описывающих источники света и съемочные камеры. После того как модели всех объектов созданы и должным образом размещены в составе сцены, можно выбрать из библиотеки любые готовые материалы, такие как пластик, дерево, камень и т.д. и применить эти материалы к объектам сцены. Можно создать и собственные материалы, пользуясь средствами редактора материалов, с помощью которых можно управлять цветом, глянцевитостью, прозрачностью и даже применять сканированные фотографии или нарисованные изображения, чтобы поверхность объекта выглядела так, как это было задумано. Применив к объектам материалы, необходимо создать воображаемые съемочные камеры, через объективы которых будет наблюдаться виртуальный трехмерный мир, и производиться съемка наполняющих его объектов. За счет настройки параметров виртуальных камер можно получить широкоугольную панораму сцены или укрупнить план съемки, чтобы сосредоточить свое внимание на отдельных мелких деталях. Чтобы сделать сцену еще более реалистичной, можно добавить в ее состав источники света.

Содержание

Построение 3D моделей в нефтегазовом деле

Как известно, одним из основных объектов, используемых в нефтегазовом деле, является скважина. Но для того, чтобы построить эксплуатационную скважину и првильно определить место ее нахождения, нужно знать форму продуктивного пласта, породы (флюидоупоры и коллекторы), окружающие его и многие другие факторы, влияющие на процессы разработки, бурения, транспортировки и получения прибыли. Для этого в последние годы и стали практиковать построение 3D изображений пластов, как процесс менее трудоемкий и достаточно высокоэффективный по сравнению с построением разведочных скважин. Этот метод основан на получение изображения по отраженным продольным и поперечным волнам, направленным в направлении продуктивного пласта.

При этом необходимо учитывать, что получаемые разрезы должны быть динамически представительными. Для получения изображения околоскважинного пространства в истинных амплитудах необходимо правильным образом построить обработку волновых полей ВСП.

Важно отметить, что для решения задачи получения разреза в истинных амплитудах

исходные волновые поля должны быть трехкомпонентными. Это накладывает соответствующие требования на методику полевых наблюдений и обработку данных.

Для решения задачи получения истинных амплитуд изображений околоскважинного

пространства разработан метод, использующий лучевые преобразования векторных волновых полей.

Процесс получения динамически обоснованного изображения околоскважинного

пространства по данным ВСП в предлагаемой схеме можно разделить на несколько этапов:

- получение одномерной скоростной модели среды по данным ВСП для продольных и

поперечных волн;

- определение глубин, углов наклона и азимутов отражающих границ, пересекающих

скважину;

- построение априорной трехмерной скоростной модели среды;

- решение прямой кинематической задачи для трехмерной модели с оценкой динамических характеристик отраженных волн;

- получение изображения околоскважинного пространства по однократно отраженным

продольным или обменным волнам после деконволюции.

Обработка трехкомпонентных наблюдений ВСП строится на основе трехмерной модели

среды. Модель среды предполагается состоящей из блоков с плоскими разнонаклонными

границами. Параметры наклонов границ на скважине задаются исходя из результатов

поляризационной обработки трехкомпонентных наблюдений ВСП. По своим физическим

свойствам среда предполагается однородной и трансверсально изотропной, при этом оси

симметрии в каждом блоке могут иметь произвольный наклон. Скоростные параметры слоев задаются по результатам решения обратной кинематической задачи определения скоростей и параметров анизотропии, решаемой одновременно для всей совокупности пунктов возбуждения.

Для решения задачи получения изображения разреза в истинных амплитудах используется

метод лучевого проектирования с компенсацией всех кинематических и динамических факторов распространения волн. Решение прямой задачи производится для продольных и поперечных волн. В каждой точке трехкомпонентного модельного волнового поля фиксируется не только наличие или отсутствие отражения, но и параметры поляризации, а также поправочный динамический коэффициент, позволяющие скорректировать динамические характеристики реально наблюденных отраженных волн при их преобразовании в глубинный разрез таким образом, чтобы их интенсивность соответствовала интенсивности при нормальном падении и отражении от границы. В динамический коэффициент должна входить также поправка за лучевое расхождение.

Непосредственно получение изображения околоскважинного пространства технически

можно разделить на два этапа:

- преобразование время-пространство по трехмерной модели;

- трансформация однократно отраженных волн ВСП в изображение околоскважинного

пространства для трехмерной модели;

Содержание

Обсуждение положительных и отрицательных качеств 3D визуализации.

КПР по ХМАО, НАЦ РН ХМАО, ОАО “Хантымансийскгеофизика”, ОАО “Тюмен-нефтегеофизика” 3-4 июля 2005 провели совместное совещание-семинар. Его целью являлось изучение ситуации с результативностью работ 3D сейсморазведки, обмен наработанными за последние годы методическими приемами, выработка концепции использования 3D сейсморазведки в настоящее время.

С концептуальным докладом, раскрывающим как вопросы эффективности, так и проблемы использования 3D, выступил Цибулин И. Л. (ЦАГГИ, Хантымансийскгеофизика). Он обосновывал необходимость применения 3D сейсморазведки в зонах, характеризующихся сложным строением, контролирующих нефтеносность объектов поиска и разведки. Им были описаны возможные методики по обоснованию применения 3D на стадиях подготовки геологического задания на проведение работ с использованием современных компьютерных средств и программных комплексов.

Несколько докладов было представлено компанией “ЛУКОЙЛ”. В их докладах был освящен широкий круг вопросов от методик прогноза литофациальных характеристик до оценки экономической эффективности работ.

В докладе Шерстнова В. А. (Сургутнефтегаз) приводились стоимостные показатели работ 3D и делался вывод о том, что стоимость “на единицу площади работ 3D примерно в два раза превышает стоимость 2D, а стоимость 100 км2 соответствует стоимости разведочной скважины”. В случае прироста запасов в категорию С1 по данным 3D (Биттемское месторождение) сэкономлено до 4 скважин. Такой подход для разведочного этапа позволяет оценить эффективность применения 3D технологий.