Смекни!
smekni.com

по теме : Показатели качества и эффективности работы железнодорожного транспорта. Проверил ст. Преподаватель: Цевелев А. В (стр. 7 из 8)

5. ЭФФЕКТИВНОСТЬ РЕКОНСТРУКЦИИ

И РАЗВИТИЯ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ

ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

5.1. РАЗВИТИЕ ПРОГРЕССИВНЫХ ВИДОВ ТЯГИ

И ИХ ЭФФЕКТИВНОСТЬ

Прогрессивные виды тяги – электрическая и тепловозная – начали развиваться на железнодорожном транспорте в XX в. В 1923 г. было принято решение о постройке первых тепловозов, а в 1924 г. в Ленинграде завершилась постройка поездного тепловоза серии Щ с электрической передачей. В 1926 г. был сдан в эксплуатацию первый в нашей стране электрифицированный участок Баку–Сабунчи–Сураханы, связавший Баку с нефтепромыслами на Апшероне. В последующие годы были электрифицированы многие пригородные линии Московского узла, труднейшие горные участки железных дорог Закавказья, Урала, заполярный участок Мурманск–Кандалакша, линия Запорожье–Долгинцево, ряд участков в Кузбассе и других районах страны.

Однако до Великой Отечественной войны основным видом тяги на железных дорогах продолжала оставаться паровая. В 1940 г. электрической и тепловозной

тягой выполнялось всего лишь 2,2% общего грузооборота железных дорог, а в

1950 г. – 5,4%. При паровой тяге железнодорожный транспорт расходовал до 30% общей добычи угля в стране, себестоимость и трудоемкость перевозок были высокие, а условия труда большого числа работников – тяжелые.

Во второй послевоенной пятилетке (1951–1955 гг.) внедрение электрической и тепловозной тяги осуществлялось несколько быстрее, однако темпы развития были по-прежнему недостаточны. Железнодорожный транспорт, как правило, не осваивал средства, отпускаемые на реконструкцию тяги. Основным направлением усиления тяги оставалось повышение мощностных характеристик паровозов. Вместе с тем, в 1955 г. электровозы и тепловозы освоили уже 14,1% общего грузооборота железнодорожного транспорта, а протяженность

линий с электрической и тепловозной тягой составляла около 12 тыс. км.

Переломным стал 1956 г., когда был утвержден Генеральный план электрификации железнодорожного транспорта СССР. Особенностью данного периода (1956–1970 гг.) является перевод на электрическую тягу целых направлений большой протяженности. Если в 1951–1955 гг. ежегодный прирост электрифицированных линий составлял около 0,5 тыс. км, то уже в 1956–1960 гг. он равнялся 1,7 тыс. км, а в 1961–1970 гг. превысил 2 тыс. км. Одновременно все эти годы на тепловозную тягу ежегодно переводилось по 7–8 тыс. км. В результате реализации Генерального плана электрификации в 1970 г. только электрической тягой было освоено 48,7%, а тепловозами и электровозами вместе – 96,5% грузооборота. Протяженность электрифицированных линий составила 25,1% эксплуатационной длины сети, а линий с тепловозной тягой – 56,4%. В нашей стране появились не имеющие себе равных по протяженности, пропускной и провозной способности электрифицированные магистрали: Москва–Куйбышев–Омск–Тайшет–Карымская–Петровский завод (6,1 тыс. км);

Ленинград–Моcква–Харьков–Ростов–Тбилиси–Ленинакан–Норашен (3,6 тыс.

км); Москва–Горький–Свердловск–Тюмень–Омск (2,7 тыс. км); Москва–Киев–

Львов–Чоп (1,7 тыс. км); Москва–Кочетовка–Ростов-на-Дону (1,2 тыс. км); Новосибирск–Новокузнецк–Абакан–Коршуниха (2 тыс. км).

К началу 1990-х гг. доля электрической тяги в общей работе по перевозкам

достигла 63,7% (в пассажирском движении – 70%, в пригородном пассажирском сообщении – почти 90%), составив около 31% перевозной работы железных дорог мира.

В настоящее время ОАО «РЖД» обладает самой протяженной в мире – 42 тыс. км – сетью электрифицированных железных дорог. С учетом многолетнего опыта повышения эффективности перевозок на электротяге, Стратегической программой развития ОАО «РЖД» до 2010 г. предусмотрено электрифицировать до 2-х тыс. км железнодорожных линий. Таким образом, к 2010 г. общая протяженность электрифицированных участков достигнет 44,5 тыс. км, на них будет выполняться до 84% всех перевозок.

В настоящее время электрификация железных дорог продолжается. Перевод

на электрическую тягу предусматривается в первую очередь наиболее загруженных направлений и участков, а также соединительных линий между электрифицированными направлениями для унификации видов тяги. В 2002 г. электрифицированы участки Обозерская–Маленга, Идель–Свирь. Завершена электрификация Транссибирской магистрали (участок Сибирцево–Губерово). В 2003 г. электрифицирован участок Старый Оскол–Валуйки. В 2004 г. завершена электрификация направления Саратов–Волгоград–Тихорецкая, начались работы по электрификации линии Вологда–Череповец–Волховстрой–Петрозаводск–Мурманск.

На период до 2010 г. запланирована электрификация направлений Волгоград–Астрахань с переводом Волгоградского узла на переменный ток, Кивиярви–Ледмозеро–Кочкома и ряда других. Предусматривается также перевод с постоянного на переменный ток направлений Лоухи–Мурманск, Данилов–Александров и др.

В результате электрификации перечисленных выше направлений в рамках Программы модернизации транспортной системы России с 2001 по 2010 гг. планируется высвобождение 1315 тепловозов, будет обеспечено сокращение потребности дизельного топлива в количестве 6785 тыс. т, повышение участковой скорости грузовых поездов с 33 до 49 км/ч, сокращение эксплуатационного штата на 4200 чел., а также сокращение вредных выбросов в атмосферу в размере 105,2 тыс. т на 2010 г.

Электрификация железных дорог и перевод их на тепловозную тягу сопровождаются совершенствованием локомотивов, улучшением их технико-экономических характеристик.

Одним из решающих технико-экономических преимуществ электрической и тепловозной тяги, обусловивших полную замену ими паровой тяги, является высокий коэффициент использования энергоресурсов, т.е. коэффициент полезного действия (КПД) электровозов и тепловозов. Он характеризуется отношением полезно использованной энергии ко всей затраченной энергии при работе локомотивов. У современных электровозов КПД составляет около 0,85–0,90, а у

тепловозов – 0,28–0,32 (самые совершенные паровозы имели КПД 0,07–0,10).

Однако эти показатели не отражают уровня использования первичных энергоресурсов от момента добычи топлива или производства электроэнергии на ТЭС, ГЭС или АЭС до их превращения в полезную работу по передвижению поездов.

Следует различать КПД электровоза и КПД электрической тяги в целом. Суммарный коэффициент полезного действия электротяги учитывает все потери энергии: на ТЭС при сжигании топлива, в высоковольтных ЛЭП, на тяговых подстанциях, в контактной сети и на самом электровозе. Кроме того, учитываются также потери топлива при его добыче, транспортировке и хранении. При прогрессивных видах тяги существенно возрастает пропускная и провозная способность железных дорог. Замена тепловозной тяги электрической на однопутных линиях при профиле средней трудности повышает пропускную способность на 10–20%. На однопутных линиях с горным рельефом и небольшой долей перегонов с легким профилем электрическая тяга может дать прирост пропускной способности по сравнению с тепловозной на 30–35% и более. Рост пропускной и провозной способности электрической тяги как более надежной по сравнению с тепловозной происходит, во-первых, за счет увеличения массы поезда (что объясняется особенностью тяговых характеристик электровозов, мощность которых при небольших скоростях в условиях трудного профиля значительно повышается, у тепловозов же она постоянна в большом диапазоне скоростей); во-вторых, за счет увеличения ходовой и технической скоростей движения поезда, а также участковой скорости, особенно на однопутных линиях. Средние ходовые и техническое скорости при электрической тяге на 10–15% выше, чем при тепловозной. На загруженных двухпутных линиях применение электрической тяги позволяет благодаря росту ходовой скорости и сокращению интервала попутного следования между поездами увеличить максимальную пропускную способность по перегонам со 144–160 до 180–200 пар поездов (т.е. до 25%).

В результате повышения массы и скорости движения поездов при электрической тяге существенно увеличивается производительность электровозов по сравнению с тепловозами. Она растет еще и потому, что электровозы могут работать на длинных тяговых плечах, совершая большие безостановочные рейсы, при которых значительно увеличивается время их полезной работы. Наибольший прирост производительности электровозов достигается в условиях трудного профиля пути, так как скорость движения электровоза на руководящем подъеме может почти вдвое превышать скорость движения тепловоза. Электровозы, кроме того, могут работать по системе многих единиц, т. е. сочленяться друг с другом при синхронном управлении ими с одного поста, что позволяет увеличить массу поезда в несколько раз. Производительность труда работников локомотивного хозяйства при электрической тяге значительно выше, чем при тепловозной, а расходы по локомотивному хозяйству ниже. Это обусловливается более высокой производительностью электровозов по сравнению с тепловозами, а также значительным сокращением численности работников, занятых на ремонте и техническом обслуживании электровозов. В сопоставимых условиях при одинаковом объеме перевозочной работы в тонно-километрах брутто стоимость ремонта электровозов примерно вдвое, а технического обслуживания – втрое ниже, чем тепловозов. Вместе с тем, при электрической тяге возникает потребность в дополнительном штате работников и дополнительных эксплуатационных расходах, которых нет при тепловозной тяге. К ним относят расходы на содержание, ремонт

и амортизацию контактной сети, тяговых подстанций и дистанций электроснабжения. Но эти расходы относительно невелики и составляют примерно 5% в себестоимости перевозок при электрической тяге. В целом, внедрение электрической тяги вместо тепловозной сокращает эксплуатационный контингент