Смекни!
smekni.com

по теме: Нанотехнология и живой организм (стр. 2 из 3)

Всем известна проблема с “гостем “ наших картофельных полей из Америки – колорадским жуком. Чего только ни предлагали в борьбе с ним – от сильнодействующих ядов до трансгенного картофеля, который, по данным Института картофелеводства, уже благополучно поедают отдельные особи этого насекомого. Вероятно, не тот путь был избран для решения этой проблемы. Изменчивость насекомых с учетом их многочисленности и плодовитости во много раз превосходит изменения, происходящие в растениях.

Так почему бы не использовать эти особенности и, применяя нанотехнологии, не изменить кормовую базу колорадского жука? Чтобы он с удовольствием поедал осот, а не картофель. Фантастика. Но она может стать реальностью.

7

Вот пример, в 70-е и 90-е годы прошлого столетия в Крыму наблюдалось нашествие обычно безобидного лугового мотылька. Но в те годы он вдруг стал всеядным вредителем, который за ночь опустошал поля подсолнечника и люцерны, свеклы и кукурузы. Однако когда на пути у него стало поле сои, относительно чистое от сорняков, он уничтожил все сорняки и не затронул сою . Вот так надо изменить “вкусы” колорадского жука, чтобы ему захотелось другой пищи.

Или еще пример, Рашид Башир, работающий над проблемой доставки лекарств а Центре нанотехнологий в Барке, смог поместить наночастицы на поверхность бактерий, связав их к поверхности бактерий специальными молекулами – линкерами. На одной бактерии можно разместить до нескольких сотен наночастиц, расширив таким образом количество и типы доставляемых грузов.

Так как бактерии обладают естественной способностью проникать в живые клетки, на сегодняшний день они являются идеальными кандидатами для доставки лекарств. Особенно это ценно в генной терапии, где необходимо доставить фрагменты ДНК по назначению ,не убив при этом здоровую клетку .

После этого, как гены попадают в клеточное ядро, оно начинает вырабатывать специфические белки, корректируя таким образом генетическое заболевание. Как говорит Р. Башир, подобным образом можно доставлять внутрь клеток лекарства или же диагностические агенты.

Этот метод мог бы стать основополагающим в диагностике и лечении сельскохозяйственных животных и на ранних стадиях предупреждать опасные эпидемии, повышать устойчивость организма животных к таким болезням.

Тем более, что многие вирусы имеют размер 10 нм, а 1 нм почти точно соответствует размеру белковых молекул (в частности, радиус

знаменитой двойной спирали молекул ДНК равен именно 1 нм).

Каждая частица квантовой системы каким-то загадочным образом “знает” о том, что происходит с другими частицами. Познав этот механизм, мы должны применить его на благо цивилизации.

8

3. Достижения нанотехнологии.

Сегодня используют достижения новой технологии. Нанотехнология основана на применении наночастиц. Наночастица- это частица размером 10 в -9 степени метров. Наночастицы внедряют в структуру веществ. Наночастицы очень активны. Они не могут долго существовать и их сразу вводят в связующее вещество- гель, а в форме геля добавляют в производство веществ. За счет таких добавок улучшаются свойства - прочность, стойкость к атмосферным условиям, продлевается срок службы радиодеталей.

В России три предприятия, которые могут делать ультра дисперсные частицы . В Сан Петербурге, под Москвой и в Бийске.

В Томской области создана экономическая зона. На Нефтехимическом комбинате на основе нанотехнологии создали бронежилет на полимерной основе. Вес бронежилета всего три килограмма, вместо 30 килограмм в обычном бронежилете.

Одним из методов, используемых для изучения нанообъектов, является атомно – силовая микроскопия. С помощью атомно – силового микроскопа можно не только увидеть отдельные атомы, но также избирательно воздействовать на них, в частности, перемещать атомы по поверхности. Ученым уже удалось создать двумерные наноструктуры на поверхности, используя данный метод.

Как же нанотехнология связана с экологией?

Использование нанотехнологии обеспечит полное устранение вредного влияния деятельности человека на окружающую среду. Во первых за счет насыщения экосферы молекулярными роботами- санитарами, превращающими отходы деятельности человека в исходное сырье, а во вторых перевода промышленности и сельского хозяйства на безотходные нанотехнологические методы. Применяют нанотехнологии и в изготовлении упаковки, позволяя сохранять пищу свежей дольше или улучшать ее вкус. Начиная с бутылок минеральной воды, которые увеличивают срок годности. Частицы наноглины в пластмассовых бутылках блокируют утечку углекислого газа из бутылки, которые препятствуют порче минеральной воды. Бутылки заменяют более дорогое стекло или канистры и фактически не бьются. А как же наше здоровье? Упаковочный материал безвреден для здоровья.
Также проводится работа над добавками нанобарьеров к пластиковой пищевой упаковке.

В чем же выгода?

Прежде всего, более долгий срок годности. Плюс новшество может предотвратить перетекание вкуса упаковки на пищу. Кроме того, есть огромное поле развития различных датчиков, которые смогут предупредить потребителей, когда продукт испортился. Получение упаковочного материала за счет нанотехнологий даст возможность сохранить природные материалы и по возможности защитить природу от вредных выбросов.

9

Нанотехнология поможет фермерам вырастить более высокие урожаи и уменьшить выброс опасных веществ в окружающую среду. Нанотехнология сможет обеспечить фермера датчиками, которые укажут, что данным растениям не хватает воды или питательных веществ. Растение получит то, в чем нуждается. А пестициды? Вообразите, что наночастицы выпускают пестициды не в почву, а в организм, какого то насекомого. Утилизация отходов и глобальный контроль за системами типа «Ресурс лимит» позволит существенно увеличить сырьевые запасы человечества. Современные технологии позволяют пустить в дело практически все. Уже сейчас карандаши получают из переработанной джинсовой ткани, сумки, футболки изготавливают из отходов пластиковых бутылок. Мы видим экологически грамотное отношение к бытовому мусору. Станут возможными глобальный экологический контроль, погодный контроль благодаря системе взаимодействующих нанороботов, работающих синхронно. С помощью нанопреобразователей можно будет преобразовывать любые виды энергии с большим КПД и создавать любые устройства для получения электроэнергии из солнечного излучения. Энергосбережение станет возможным благодаря созданию с помощью нанотехнологий материалов с необходимыми свойствами, экологически безвредными для человека.

Нанотехнология стала не только пищей для ума. Действительно, посмотрите на полки магазинов - нанотехнология уже приложилась к большому списку продуктов. Мы привыкли к обогащенной муке, энергетическим напиткам и витаминизированному молоку. Нанотехнология обогащает каждодневную пищу. Например, немецкая компания предлагает еду и напитки с добавлением антиоксидантов, изготовленную с помощью нанотехнологии. Во время обеда можно получить полезный для здоровья рыбий жир без нелюбимого с детства вкуса. Получение строительных материалов без переработки древесины поможет сохранить леса и решить ряд экологических проблем человечества.

10

4. Перспективы использования нанотехнологии.

На данный момент можно наметить следующие перспективы нанотехнологий:

Нанотехнология- без сомнения самое передовое и многообещающее направление науки и техники на сегодняшний день. Возможности ее поражают воображение, мощь - вселяет страх. Видимо будущее развитие технологии будет основываться на балансе между созиданием и разрушением. Конечно могут появиться какие то военные и, более того, подпольно- хакерские, применения. Но многообразие мирных задач, поставленных перед нанотехнологией сегодня, не даст покоя ученым.

Нанотехлогия в корне изменит нашу жизнь. Появится новые возможности, идеи

Мы используем достижения новой технологии сегодня и уже не можем от нее отказаться. Нам уже сложно помыслить даже день без компакт- дисков,а так же всего того, что мы не видим. Это то, что упрятано в корпуса машин, систем безопасности, контроля окружающей среды .

Датчики на основе наноэлементов используются уже далеко не первый год.

Нанороботы в будущем создают интеллектуальную среду обитания. Благодаря огромному количеству роботов, сеть будет “распараллельной “, что позволит передавать информацию с невообразимой сегодня скоростью.

Биология. Станет возможным внедрение наноэлементов в живой организм на уровне атомов. Последствия могут быть самыми различными - от восстановления «вымерших» видов до создания новых типов живых существ, биороботов. Медицина- биоимплантанты, вживляемые в организм, несущие на борту от чипов с личной информацией до электронных органов. Они пусть медленно, но успешно работают. Конечно, эти разработки сегодня слишком велики по габаритам, чтобы сравнить с наноустройствами, однако уже сейчас мы может оценить, чем мы будем жить в будущем , причем не слишком отдаленном .

Представляете, японские ученые изобрели полимерные батарейки толщиной 200 нанометров \10в – 9 степени метр \. Это почти в 500 раз тоньше человеческого волоса. Элемент полностью заряжается за одну минуту, а в количество жизненных циклонов превышает 1000.ученые считают, что новая батарейка не будет испытывать проблем с саморазрядкой.

В России в ближайшее время появятся светодиодные лампы. Они дадут возможность сэкономить энергоресурсы. На сегодняшний день нанотехнологии имеют огромные перспективы. Геронтология. Достижение личного бессмертия людей за счет внедрения в организм молекулярных роботов, предотвращающих старение клеток, а так же перестройки и улучшения тканей человеческого организма. Промышленность. Замена традиционных методов производства сборки молекулярными роботами предметов потребления непосредственно из атомов и молекул. Сельское хозяйство. Замена природных производителей пищи /растений, животных/ аналогичными функционально комплексами из молекулярных