Необходимо особо отметить растущее внимание западных фирм к расширению базы стандартных образцов состава и свойств горных пород (СОГП) по насыщенности и конструкциям скважин [9].
В состав СОГП фирмы Schlumberger входят блоки песчаников с нулевой, 15÷19, 33÷35 % пористостью. Блоки известняка нулевой, 15÷19, 42÷45 % пористостью. В каждой из моделей имеются скважины следующих диаметров: 4.125, 6, 8, 8.5, 10 и 12 дюймов. Для проведения измерений в обсаженной скважине используется набор различных конструкций обсадки. Для скважин диаметром 12 дюймов (305 мм) имеются обсадные колонны: 8.625, 9.625 и 10 дюймов. Для учёта влияния толщины колонны на показания измерений используются образцы обсадок (в скважине 9.625 дюймов) с толщиной стенки: 9, 10 и 11 мм. Заполнение скважины может быть воздухом, водой или нефтью. Насыщение породы может быть водой или соляркой. Модельный парк (Environment Effects Calibration Facility (EECF)) расположен в Хьюстоне.
Western Atlas также обладает достаточно широкой базой СОГП: песчаник, известняк, доломит со скважинами трех диаметров (6; 8,1/2; 12,3/4 дюйма), в которые может быть размещена обсадка (4,1/2; 7; 9,5/8 дюйма), скважина также может быть заполнена водой или нефтью. Все модели выполнены из натуральных блоков пород, причем размеры превышают глубинность импульсных методов.
Согласно опубликованным данным широкое применение модельных измерений позволило снизить абсолютную погрешность измерения Кн до 7¸10 %.
1.2.4. Основные измеряемые параметры и особенности первичной обработки
В приборе GST для обработки используется часть спектра в диапазоне 1.2¸8 МэВ [4].
В результате расчёта определяется процентный вклад каждого элемента в общий спектр, его называют выходом элемента. Различают выход элемента и концентрацию данного элемента в пласте. Для получения концентрации по полученному выходу элемента, рассчитывается масштабный множитель, который учитывает математическую вероятность взаимодействия нейтрона с данным элементом и вызова характерного гамма-излучения по отношению к вероятности его взаимодействия с другим элементом пласта. Расчет масштабного множителя является сложным математическим процессом со многими неизвестными. Выходы элементов кальция, кремния, железа и серы получают как из спектра неупругого рассеяния, так и из спектра радиационного захвата. Выходы элементов углерода и кислорода получают из зарегистрированных спектров неупругого рассеяния, в то время как выходы элементов хлора и водорода получают из спектров радиационного захвата. Если в процессе работы происходит изменение мощности источника нейтронов, соотношения выходов элементов рассчитываются с учётом этого изменения. При использовании оперативного метода обработки нет необходимости в сложных расчётах масштабных коэффициентов, как в случае получения абсолютных концентраций породообразующих элементов.
Таблица 3 - Основные отношения выходов элементов регистрируемых аппаратурой GST
Соотношение выходов | Взаимодействие | Название | Сокращенное название |
С/О | Неупругое | Соотношение углерод-кислород | COR |
Cl/H | Захват | Соотношение указания солености | SIR |
H/(Si+Ca) | Захват | Соотношение указания пористости | PIR |
Fe/(Si+Ca) | Захват | Соотношение указания железа | IIR |
Si/(Si+Ca) | Захват и неупругое | Соотношение указания литологии | LIR |
S/(Si+Ca) | Захват | Соотношение указания ангидрида | AIR |
Названия, употребляемые в соотношениях выходов элементов (таблица 3), в большинстве случаев указывают на макроскопическое сечение измеряемых параметров. Соотношение IIR используется как указатель на сланец, так как минералы, содержащие глину, также содержат железо. Выход элемента железа, и, таким образом и IIR искажаются за счет влияния обсадной трубы. Соотношение COR в основном используется для установления местоположения углеводородов, но оно также искажено влиянием карбонатного пласта, а иногда за счет жидкости заполняющей скважину и свойств цемента.
В приборе PSGT для обработки применяются отношения С/О и параметр литологии (кальций/кремний). Эти расчётные параметры используются как оперативные показатели нефти в нефтеносных пластах. Кроме того, прибор PSGT определяет в пласте 8 элементов, необходимых для определения литологии: Ca, Cl, H, Fe, K, Si, S, Ti. Примеры спектров ГИНР и ГИРЗ, зарегистрированные зарубежной аппаратурой углеродно-кислородного каротажа для различных скважинных условий приведены на рисунке 1.4. Полная обработка спектров прибора PSGT дает относительное содержание элементов, вычисленное с помощью МВНК. Имеется ряд дополнительных функций для вычисления объема глины, эффективной пористости и нефтенасыщенности.
Традиционным ограничением измерений содержания углерод/кислорода является его малый динамический диапазон. Согласно опубликованным данным динамический диапазон измерения аппаратурой PSGT составляет не более 18 % при 35 единицах пористости в 10 дюймовой скважине. Кроме того, существует ограничение, связанное с небольшим радиусом исследования. При измерениях аппаратурой ИНГКС методом радиационного захвата глубина исследования составляет 13÷20 см, а при регистрации гамма- квантов неупругого рассеяния уменьшается до 8÷16 см [22]. Следовательно, спектры ГИНР более подвержены скважинному влиянию. То есть, для корректной интерпретации необходимо иметь дополнительные данные о свойствах жидкости в скважине и её конструкции.1.2.5. Комплексирование аппаратуры
Важной особенностью существующей спектрометрической аппаратуры является возможность её наращивания в связки с целью комплексирования различных геофизических методов [4, 5].
Скважинный импульсный спектрометр GST в комплексе с аппаратурой других методов составляет связку геохимического каротажа. Измерения, выполненные такой связкой, позволяют определять концентрации 12 элементов (алюминий, кальций, хлор, гадолиний, водород, железо, калий, кремний, сера, торий, титан, уран), что является альтернативой отбору керна.
Аппаратура PSGT для проведения дополнительных измерений, может комбинироваться с другими приборами с помощью цифровой телеметрии (DITS) компании “Halliburton”. Например, при отсутствии данных пористости в открытом стволе используется прибор 2НК, в коллекторах с радиоактивными отложениями - прибор компенсированного СГК (PSG). При проведении послекаротажного анализа используются только данные PSGT, однако привлечение дополнительных каротажных данных открытого или обсаженного ствола позволяют вычислять общую и эффективную пористость.
1.2.6. Спектрометрическая аппаратура с полупроводниковым детектором
В процессе поиска технологий для решения задач по оценке нефтенасыщенности на месторождениях со слабой или неизвестной минерализацией пластовых вод, одним из направлений создания аппаратуры ИНГКС, является разработка аппаратуры с высокоразрешающим полупроводниковым Ge(Li) детектором. В 1985 году фирма Shlumberger разработала аппаратуру углеродно-кислородного каротажа с импульсным генератором нейтронов (14 МэВ) и детектором гамма-излучения на основе германиевого криозонда, см. таблицу 2. Прибор PGT содержит криогенно охлаждённый Ge(Li) детектор размерами 2´2 дюйма (5.08´5.08 см) и скважинную микропроцессорную систему с двумя 4000-канальными оперативными запоминающими устройствами (ОЗУ) (8 бит на канал), регистрирующую спектры ГИНР и ГИРЗ. Импульсный нейтронный генератор работает с частотой 20 кГц. Временные соотношения аналогичны приборам ИНГКС со сцинтилляционным детектором. Аналогово-цифровой преобразователь имеет время преобразования 12 мкс, при этом максимальная скорость счёта составляет 70 кГц. Прибор PGT может работать либо в стационарном (время накопления 5 мин) или в непрерывном режиме, измеренные данные передаются на поверхность каждые две секунды. Эффективность регистрации германиевого детектора ниже, чем сцинтилляционного кристалла NaI(Tl), но он имеет более высокое разрешение. Несмотря на уширение энергетических линий по Доплеру до 90 кэВ, разрешение германиевого детектора выше чем у кристаллов NaI(Tl) приблизительно в 3 раза. Несмотря на некоторые преимущества полупроводниковых детекторов, они обладают и рядом технологических недостатков. Как известно, этот детектор работоспособен при температуре ниже -135 °С, т.е. при температуре жидкого азота. Детектор размещается в морозильной камере, в которой хладоагентом является фреон или твердый криоген. Перед проведением скважинных исследований криозонд предварительно охлаждается жидким азотом, при этом работоспособность прибора обеспечивается в течение 20 часов при температуре +30 оС, или 11 часов при +100 оС. По истечении этого времени прибор поднимается на поверхность для повторения процедуры охлаждения. Данная технологическая цепочка увеличивает время задалживания скважины и приводит к определённым организационным проблемам. Кроме того, построение аппаратуры с ППД значительно усложняет электронику скважинной аппаратуры: наличие большого “темнового” тока детектора требует применения хладоагента, небольшие выходные токи детектора - применения специальных схем усиления, многоканальность АЦП - увеличения объёма скважинного ОЗУ и, как следствие, времени передачи данных, что в конечном итоге сказывается на скорости каротажа. Вероятно, именно эти недостатки сдерживают широкое внедрение данного типа аппаратуры. На сегодняшний день ни одна из вышеназванных зарубежных фирм не предлагает геофизические услуги аппаратурой углеродно-кислородного каротажа с полупроводниковыми детекторами [4, 5].